Mengkonversi Polygon Peta Pada ArcGIS ke Matriks di Matlab

Terkadang untuk melakukan manipulasi dengan Matlab membutuhkan konversi dari data berupa peta menjadi matriks. Jika sudah dalam bentuk matriks maka beragam metode dapat diterapkan untuk memanipulasi matriks peta tersebut seperti pengklusteran, klasifikasi, dan lain-lain. Postingan ini bermaksud mengkonversi citra polygon menjadi matriks di Matlab.

Mempersiapkan Poligon

Terlebih dahulu persiapkan peta poligon, misalnya lokasi sekolah di bekasi selatan. Karena fungsi polygon to raster di ArcGIS tidak berlaku untuk titik maka diperlukan proses “buffering” agar dihasilkan region sebuah titik. Cari fungsi “buffering” tersebut di kolom “search” pada ArcGIS anda.

Di sini dibuat lingkaran dengan jarak 50 meter dari pusat titik di tiap-tiap lokasi. Secara default tipenya adalah lingkaran. Jika sudah tekan “OK” di bagian bawah. Pastikan peta baru yang berisi lingkaran dengan jari-jari 50 meter yang berada di sekitar titik lokasi.

Konversi ke Raster

Untuk menjadikan poligon menjadi matriks diperlukan proses konversi dari poligon ke raster dengan fungsi “Polygon to Raster”.

Tekan “OK” dan tunggu sesaat hingga ArcGIS membuat rasternya seperti gambar berikut ini. Perhatikan yang tadinya lingkaran (round) sedikit berubah menjadi kotak-kotak.

Membentuk Matriks di Matlab

Terakhir kita menarik data yang telah dibuat oleh ArcGIS ke Matlab. Pertama-tama data perlu di- “Export” terlebih dahulu. Bentuknya terdiri dari beberapa layer dengan komponen utamanya berekstensi TIF yang mirip dengan JPG atau PNG.

Pastikan di folder target terdapat salah satu citra yang akan dibaca matriksnya lewat Matlab. Arahkan “Current Directory” pada lokasi yang sesuai agar bisa dibaca Matlab. Jalankan perintah ini untuk melihat “image”nya.

  • imshow(‘sekolah_PolygonToRaster11.tif’)

Jika kita lihat ukurannya masih sangat besar.

  • I=imread(‘sekolah_PolygonToRaster11.tif’);
  • size(I)
  • ans =
  • 474 248

Ada baiknya resolusi sedikit diturunkan agar diperoleh matriks yang mudah dimanipulasi. Gunakan fungsi “imresize” dengan sebelumnya mengkonversi gray menjadi biner.

  • I2=imresize(I,0.25);
  • size(I2)
  • ans =
  • 119 62

Tampak resolusinya berkurang seperempatnya. Konversi menjadi biner agar dihasilkan image yang tidak pecah-pecah seperti di atas. Untuk membahas masalah tersebut perlu postingan lain tentang pengolahan citra. Semoga bisa menginspirasi.