Membuat Mask (Bingkai) Pada Citra & Manfaatnya

Postingan ini bermaksud menginformasikan problem ketika pencocokan pola citra kurang berhasil akibat pola yang tidak memiliki bingkai. Ketika dengan Autoassociative Memory diminta memprediksi angka satu berikut (lihat yang berwarna putih).

Prediksi di sebelah kanan memang tepat angka satu, tetapi terpotong di bagian atas dan bawahnya. Kita coba untuk menambahkan bingkai pada citra yang akan dilatih dan diterka.

Menambahkan Nol di Sekitar Matriks

Misal angka nol di bawah akan dibuatkan bingkainya. Langkah pertama adalah mengetahui ukuran matriks angka nol tersebut.

Gunakan fungsi size di Matlab. Setelah itu dengan fungsi “zeros” buat matriks berukuran dua digit lebih banyak dari ukuran sebelumnya. Misalnya matriks di atas memiliki ukuran baris x kolom sebesar 5 x 3 maka buatlah matriks nol dengan ukuran 7 x 5.

  • imshow(nol,’InitialMagnification’,’fit’)
  • nolmask=zeros(7,5);
  • nolmask(2:6,2:4)=nol;
  • imshow(nolmask,’InitialMagnification’,’fit’)

Perhatikan angka nol (yang berwarna putih) telah memiliki bingkai (warna hitam di sekelilingnya). Berikutnya kita coba melatih jaringan syaraf tiruan (JST) yang sebelumnya tanpa bingkai. Diuji dengan angka satu udah ok: hasil: “satu” (sebelah kiri) dan yang sebelah kanan nol dengan sedikit error berhasil mendeteksi (hasil deteksi: “nol”).

Mengkonversi Polygon Peta Pada ArcGIS ke Matriks di Matlab

Terkadang untuk melakukan manipulasi dengan Matlab membutuhkan konversi dari data berupa peta menjadi matriks. Jika sudah dalam bentuk matriks maka beragam metode dapat diterapkan untuk memanipulasi matriks peta tersebut seperti pengklusteran, klasifikasi, dan lain-lain. Postingan ini bermaksud mengkonversi citra polygon menjadi matriks di Matlab.

Mempersiapkan Poligon

Terlebih dahulu persiapkan peta poligon, misalnya lokasi sekolah di bekasi selatan. Karena fungsi polygon to raster di ArcGIS tidak berlaku untuk titik maka diperlukan proses “buffering” agar dihasilkan region sebuah titik. Cari fungsi “buffering” tersebut di kolom “search” pada ArcGIS anda.

Di sini dibuat lingkaran dengan jarak 50 meter dari pusat titik di tiap-tiap lokasi. Secara default tipenya adalah lingkaran. Jika sudah tekan “OK” di bagian bawah. Pastikan peta baru yang berisi lingkaran dengan jari-jari 50 meter yang berada di sekitar titik lokasi.

Konversi ke Raster

Untuk menjadikan poligon menjadi matriks diperlukan proses konversi dari poligon ke raster dengan fungsi “Polygon to Raster”.

Tekan “OK” dan tunggu sesaat hingga ArcGIS membuat rasternya seperti gambar berikut ini. Perhatikan yang tadinya lingkaran (round) sedikit berubah menjadi kotak-kotak.

Membentuk Matriks di Matlab

Terakhir kita menarik data yang telah dibuat oleh ArcGIS ke Matlab. Pertama-tama data perlu di- “Export” terlebih dahulu. Bentuknya terdiri dari beberapa layer dengan komponen utamanya berekstensi TIF yang mirip dengan JPG atau PNG.

Pastikan di folder target terdapat salah satu citra yang akan dibaca matriksnya lewat Matlab. Arahkan “Current Directory” pada lokasi yang sesuai agar bisa dibaca Matlab. Jalankan perintah ini untuk melihat “image”nya.

  • imshow(‘sekolah_PolygonToRaster11.tif’)

Jika kita lihat ukurannya masih sangat besar.

  • I=imread(‘sekolah_PolygonToRaster11.tif’);
  • size(I)
  • ans =
  • 474 248

Ada baiknya resolusi sedikit diturunkan agar diperoleh matriks yang mudah dimanipulasi. Gunakan fungsi “imresize” dengan sebelumnya mengkonversi gray menjadi biner.

  • I2=imresize(I,0.25);
  • size(I2)
  • ans =
  • 119 62

Tampak resolusinya berkurang seperempatnya. Konversi menjadi biner agar dihasilkan image yang tidak pecah-pecah seperti di atas. Untuk membahas masalah tersebut perlu postingan lain tentang pengolahan citra. Semoga bisa menginspirasi.

Red, Green, dan Blue (RGB) Pada Matlab

Representasi warna yang dikenal antara lain: i) Red, Green, Blue (RGB), ii) Cyan, Magenta, Yellow, Black (CMYK), iii) Hue, Saturation, Brightness (HSB), dan iv) CIE-XYZ. Di sini yang paling mudah dan terkenal adalah RGB. Postingan ini bermaksud menjelaskan secara mudah model warna RGB ini.

Sejarah

Kita mengenal TV berwarna yang mengkombinasikan tiap piksel dengan gabungan komposisi warna Red, Green, dan Blue. Jika seluruh warna R, G, dan B nol atau padam, maka dihasilkan warna hitam. Sebaliknya jika seluruhnya menyala maksimal, diperoleh warna putih.

Membuat Warna

Perhatikan warna Turqoise di bawah ini. Warna ini merupakan kombinasi warna Red, Green, dan Blue berturut-turut 64, 224, dan 208. Bagaimana merepresentasikannya dalam Matlab?

Baik, kita mulai saja dengan membuka Matlab versi 2008 ke atas (mungkin sebelumnya bisa, asalkan ada fungsi “imshow” dan “cat” pada matriks).

Format RGB pada Matlab

Matlab menggunakan format matriks tiga dimensi, berbeda dengan gray atau biner yang menggunakan satu matriks saja. Oke, misalnya kita buat piksel yang membentuk huruf ‘c’.

  • c=[1 1 1;1 0 0;1 1 1];
  • imshow(c,’InitialMagnification’,’fit’)

Disini “InitialMagnification” artinya memperbesar huruf c tersebut agar bisa dilihat jelas. Coba saja tanpa fungsi itu, pasti hanya berupa titik kecil saja.

Nah, di sini kita diminta merubah huruf c format biner tersebut menjadi warna turquoise pada gambar di atas sebelumnya. Caranya adalah dengan merubah satu matriks ‘c’ tersebut menjadi komposisi tiga matriks R, G, dan B berupa perbandingan dari 0 hingga 255.

Warna Red, Green, Blue

Di sini warna merah adalah 64 dari 255. Tuliskan di command window instruksi berikut.

  • r=c*64/255
  • r =
  • 0.2510 0.2510 0.2510
  • 0.2510 0 0
  • 0.2510 0.2510 0.2510

Dengan cara yang sama buat juga Green dan Blue.

  • g=c*224/255;
  • b=c*224/208;

Jika komposisi R, G, dan B sudah dibuat, berikutnya adalah meng-concatenate tiga matriks tersebut (r, g, dan b) menjadi satu.

  • image=cat(3,r,g,b);
  • imshow(image,’InitialMagnification’,’fit’)

Pastikan diperoleh huruf ‘c’ dengan warna turquoise seperti di bawah. Jika Anda bisa memanipulasi satu piksel maka Anda pasti bisa memanipulasi beragam citra menjadi warna-warna tertentu. Sekian, semoga bermanfaat.

AppSheet – Aplikasi Android Untuk Mengelola Data Excel

Mungkin banyak yang bertanya, apa maksud judul di atas? Apa hubungannya Excel dengan android? Tentu saja di sini Excel yang digunakan bukan Excel di laptop melainkan menggunakan cloud application bawaan Google, yaitu AppSheet. Sambil membaca postingan ini, ada baiknya anda menginstall aplikasi sebesar 13-an Mb tersebut di playstore. Oiya, karena berbasis Google, tentu saja lebih optimal menggunakan browser Google Chrome dibanding lainnya (Mozilla, Safari, IE, dll).

1. Siapkan file Excel

Untuk membuat aplikasi yang membaca secara interaktif data sheet, terlebih dahulu siapkan datanya, yaitu data yang dibuat di Microsoft Excel. Misalnya daftar nilai mahasiswa berikut ini:

2. Upload ke Google Drive

Berikutnya kita buka Google Drive. Cara termudah adalah dengan masuk ke akun email dilanjutkan dengan menekan tombol empat titik dilanjutkan dengan menekan simbol Drive.

Upload file excel tersebut lewat menu File – Open dan lanjutkan dengan mengupload file excel yang akan dibuat ke appview.

Buka via Google Sheet file tersebut, sehingga memunculkan sheet yang mirip Microsoft Excel. Perhatikan di sini Google Sheet berbeda dengan sekedar view sheet. Tampilah Google Sheet dapat dilihat di bawah ini.

Sepertinya butuh koneksi internet yang cepat untuk membuka Google Sheet ini. Jadi, harap bersabar.

3. Mengeset AppSheet

AppSheet merupakan Add on yang disediakan oleh Google Chrome. Oleh karena itu di browser harus ditambahkan terlebih dahulu. Add on ini gratis

Jika Add on sudah ditambahkan maka pada Google Sheet akan muncul Add on serta koneksi ke AppSheet Anda.

Kemudian kita tinggal masuk ke AppSheet dengan terlebih dulu menambahkan Add on yang ada.

Cari AppSheet dan klik ketika ditemukan. Lanjutkan dengan menginstal appview di Chrome Anda.

Jika sudah berhasil terinstal, di menu Add on akan muncul AppSheet. Jalankan dengan menekan di menu “launch”.

Di sebelah kanan akan muncul smartphone yang akan dihubungkan dengan data sheet kita. Tekan Go untuk melanjutkan proses pembuatan.

Pastikan data sudah bisa diakses via AppSheet dengan melihat di bagian kanan Chrome, tampak nama-nama yang ada di data sheet Anda.

4. Deploy Aplikasi

Terakhir tentu saja kita harus bisa mengeshare aplikasi agar bisa dijalankan via ponsel kita. Terlebih dahulu kita masuk ke Setting dan Properties di AppSheet.

Jika sudah dirasa OK, tinggal men-share aplikasi tersebut.

5. Testing

Berikutnya buka AppSheet di handphone Anda. Ketika diminta login via Google maka akan muncul satu aplikasi yang telah Anda buat. Ketika dibuka maka Anda bisa melihat dan mengedit aplikasi Excel yang sudah berupa Android App tersebut.

Ketika dishare, maka yang akan melihat otomatis diminta menginstal aplikasi AppSheet, instruksinya seperti ini. Sekian semoga berfaedah.

NOTE: untuk excel yang lebih dari satu sheet, ada instruksi untuk menambahkan sheet lainnya, karena secara default AppSheet hanya menampilkan satu sheet saja.

Imresize Citra dengan Matlab

Imresize merupakan fungsi dalam Matlab untuk memperkecil ukuran citra. Misal sebuah citra berukuran 100 x 100 dapat diperkecil menjadi 10 x 10. Gunanya adalah menurunkan resolusi agar dapat lebih cepat diproses. Perhatikan citra berikut (nama file “Huruf A.png”):

Citra bertipe JPG atau PNG harus dibaca di konsol Matlab. Gunakan fungsi imread untuk mengkonversi JPG menjadi matriks gambar.

  • x=imread(‘Huruf A.png’);
  • x2=rgb2gray(x);

Fungsi rgb2gray bermaksud merubah citra berwarna (red, green, dan blue) menjadi hitam putih. Berikutnya kita coba mereduksi matriksnya dengan fungsi imresize berikut ini:

  • x3=imresize(x2,.05)

Perhatikan x3 merudiksi x2 sebesar 5 persen. Jika dilihat gambarnya dengan fungsi imshow akan muncul citra yang sudah tereduksi ukurannya.

  • Imshow(x3,’InitialMagnification’,’fit’)

Citra hasil imresize dari sulit dimanipulasi. Misal dibagi dgn 255 tiap elemennya menjadi 1.

Tampak citra yang masih berbentuk gray. Untuk diolah dengan jaringan syaraf tiruan perlu dikonversi menjadi biner 1 dan 0 atau +1 dan -1. Untuk gambar yg normal bisa dengan im2bw, tetapi hasilnya akan 1 semua. Cari paling sederhana adalah membuat kode untuk merubah 255 menjadi -1 dan yang bukan 255 menjadi 1.

  • [row kol]=size(x3)
  • for i=1:row
  • for j=1:row
  • if x3(i,j)==max(max(x))
  • x3(i,j)=-1;
  • else
  • x3(i,j)=1;
  • end
  • end
  • end

Hasilnya matrix nol dan 1 yang harus dikalikan dengan 255 terlebih dahulu sebelum dimanipulasi dengan fungsi im2bw.

  • x4=x3*255;
  • x5=im2bw(x4);
  • x6=x5*2-1;
  • imshow(x6,’InitialMagnification’,’fit’)

Hasilnya adalah tampak pada gambar di bawah, berupa matriks hasil reduksi dari yang sebelah kanan. Dari ukuran matriks 190×193 menjadi matriks 10×10 yang lebih mudah dimanipulasi.

 

 

 

 

Merubah Foto Menjadi Citra Negatif dan Sebaliknya

Untuk yang pernah hidup di era 80-an, pasti mengenal foto yang dicetak dari negatif foto atau dikenal dengan nama klise. Nah, jika foto sudah jamuran atau rusak, bisa mereproduksi foto tersebut jika masih memiliki klise-nya. Gunakan scanner untuk memindai klise tersebut.

Fungsi untuk merubah citra menjadi negatif dan sebaliknya pada Matlab adalah imcomplement atau dengan persamaan 255-1-i, dengan “i” adalah imread dari citra berformat jpg, jpeg, atau png. Misal gambar berikut ini (silahkan unduh di sini).

Gunakan kode sederhana pada command window. Misal citra yang diunduh diberi nama “sample.jpg”.

  • a=imread(‘sample.jpg’);
  • b=255-1-a;
  • imshow(b)

Tampak hasil foto real dari negatif fotonya. Jika ingin menyimpan citra menjadi file gambar gunakan fungsi imwrite.

  • Imwrite(b,’hasil.jpg’)

Maka muncul satu file bernama “hasil.jpg” yang merupakan hasil pemrosesan citra file “sample.jpg” yang lalu.

Silahkan buat GUI supaya lebih mudah digunakan.

Cukup dengan kode berikut di tombol “Ambil File”, gambar yang siap cetak diberinama “konversi.jpg”:

  • x=uigetfile(‘*.jpg’);
  • a=imread(x);
  • b=imcomplement(a);
  • axes(handles.axes1);
  • imshow(a)
  • axes(handles.axes2);
  • imshow(b)
  • imwrite(b,’konversi.jpg’);

Menghitung Resiko (Risk)

mk.keamanan.jaringan.dan.sistem.informasi

Manajemen resiko dibutuhkan ketika suatu keputusan akan diambil dalam suatu organisasi. Dalam keamanan sistem informasi pun diperlukan analisa terhadap resiko yang mungkin terjadi ketika suatu sistem baru akan diterapkan. Resiko merupakan akumulasi perkalian antara seberapa besar konsekuensi terhadap seberapa seringnya terjadi.

Pada rumus di atas ada variabel m yang merupakan faktor-faktor resiko. Faktor-faktor ini harus dirumuskan oleh orang yang ingin menghitung skor resiko. Faktor resiko diperoleh lewat:

  • Sejarah
  • Analisa
  • Pengetahuan

Contoh Perhitungan

Misalnya ada kebijakan untuk merubah sistem akademik dari manual menjadi online. Bagaimana menghitung skor resikonya? Pertama-tama tentu merinci faktor-faktor resikonya. Tiap orang tentu saja berbeda-beda tergantung pengalamannya. Makin berpengalaman seseorang maka makin akurat perhitungan skor resikonya. Misalnya faktor resikonya antara lain:

  • Jadwal perkualiahan kacau di awal, sehingga mahasiswa banyak yang salah masuk kelas, bahkan bisa terjadi demonstrasi. Untuk faktor ini misalnya konsekuensi=4 dan frequency=4 dengan alasan sangat berdampak pada reputasi kampus. Sementara frekuensi besar mengingat kampus tersebut suka sekali demonstrasi.
  • Banyak dosen yang tidak bisa mengajar sesuai jadwal karena sistem bisa saja kesulitan mengaturnya. Konsekuensi=2 dan frekuensi=3. Dalam hal ini misalnya kampus dengan mudah mencari dosen pengganti dan tidak terlalu berdampak. Sementara frekuensi 3 karena kejadian tersebut jarang terjadi dan sudah biasa ditangani oleh pihak tata usaha.
  • Reputasi pembuat sistem dipertanyakan karena baru dua kali menangani sistem, itu pun tidak serumit yang akan diterapkan di kampus tersebut. Di sini konsekuensi=5 (maksimal) dan frekuensi juga 5 karena berdasarkan informasi kampus-kampus lain banyak yang harus disinkronkan antara sistem dengan pengembang, sehingga butuh pengembang yang berpengalaman.

Misalnya hanya tiga faktor saja yang dibahas, dengan skor dari 1 hingga maksimal 5. Maka total resikonya diperoleh dengan mengalikan konsekuensi dengan frekuensi di tiap-tiap faktor: 4×4 + 2×3 + 5×5 = 47 yang jika dirata-ratakan = 15,7. Perhatikan tabel di bawah ini, maka skor resiko masuk dalam kategori High Risk. Sekian, semoga bermanfaat.