Competitive Network dan Contoh Implementasinya

Tipe network ini menghasilkan keluaran yang terbesar sebagai pemenang. Misal ada tiga input sebesar 1,2, dan 3, maka pemenangnya adalah input ketiga (sebesar 3). Berikut notasi standar competitive network.

Fungsi competitive network pada matlab adalah “compet”. Buka command window pada Matlab dan coba fungsi “compet”. Untuk lebih jelasnya silahkan buka help dengan mengetik “help compet” di command window.

  • a=[1;2;3];
  • compet(a)
  • ans =
  • 0
  • 0
  • 1
  • compet(-a)
  • ans =
  • 1
  • 0
  • 0

Perhatikan kode di atas. Jika ingin menemukan nilai tertinggi gunakan fungsi compet(a) sementara jika ingin mencari terendah, gunakan compet(-a). Biasanya mencari nilai terendah digunakan dalam menentukan mana yang paling mirip (similar) antara beberapa hasil output. Tentu saja ada sedikit modifikasi kode untuk memberitahu hasil minimum suatu inputan.

Misal kita beri nama tiga input tersebut berturut-turut “nilai A”, “nilai B” dan “nilai C”. Maka sistem diminta menampilkan nilai mana yang terkecil? Lanjutkan dengan kode berikut ini.

  • input1=[“nilai A”;”nilai B”;”nilai C”];
  • hasil=compet(-a);
  • [ind,result]=find(hasil);
  • minimum=input1(ind)
  • minimum =
  • “nilai A”

Lebih simple dibandingkan dengan menggunakan “if-else” berikut ini yang jauh lebih panjang jumlah baris programnya, apalagi yang akan dibandingkan sangat banyak.

  • if (a(1)<a(2)) && (a(1)<a(3))
  • minimum=’Nilai A’
  • else
  • if a(2)<a(3)
  • minimum=’Nilai B’
  • else
  • minimum=’Nilai C’
  • end
  • end
  • minimum =
  • ‘Nilai A’

Membuat Mask (Bingkai) Pada Citra & Manfaatnya

Postingan ini bermaksud menginformasikan problem ketika pencocokan pola citra kurang berhasil akibat pola yang tidak memiliki bingkai. Ketika dengan Autoassociative Memory diminta memprediksi angka satu berikut (lihat yang berwarna putih).

Prediksi di sebelah kanan memang tepat angka satu, tetapi terpotong di bagian atas dan bawahnya. Kita coba untuk menambahkan bingkai pada citra yang akan dilatih dan diterka.

Menambahkan Nol di Sekitar Matriks

Misal angka nol di bawah akan dibuatkan bingkainya. Langkah pertama adalah mengetahui ukuran matriks angka nol tersebut.

Gunakan fungsi size di Matlab. Setelah itu dengan fungsi “zeros” buat matriks berukuran dua digit lebih banyak dari ukuran sebelumnya. Misalnya matriks di atas memiliki ukuran baris x kolom sebesar 5 x 3 maka buatlah matriks nol dengan ukuran 7 x 5.

  • imshow(nol,’InitialMagnification’,’fit’)
  • nolmask=zeros(7,5);
  • nolmask(2:6,2:4)=nol;
  • imshow(nolmask,’InitialMagnification’,’fit’)

Perhatikan angka nol (yang berwarna putih) telah memiliki bingkai (warna hitam di sekelilingnya). Berikutnya kita coba melatih jaringan syaraf tiruan (JST) yang sebelumnya tanpa bingkai. Diuji dengan angka satu udah ok: hasil: “satu” (sebelah kiri) dan yang sebelah kanan nol dengan sedikit error berhasil mendeteksi (hasil deteksi: “nol”).

Mengkonversi Polygon Peta Pada ArcGIS ke Matriks di Matlab

Terkadang untuk melakukan manipulasi dengan Matlab membutuhkan konversi dari data berupa peta menjadi matriks. Jika sudah dalam bentuk matriks maka beragam metode dapat diterapkan untuk memanipulasi matriks peta tersebut seperti pengklusteran, klasifikasi, dan lain-lain. Postingan ini bermaksud mengkonversi citra polygon menjadi matriks di Matlab.

Mempersiapkan Poligon

Terlebih dahulu persiapkan peta poligon, misalnya lokasi sekolah di bekasi selatan. Karena fungsi polygon to raster di ArcGIS tidak berlaku untuk titik maka diperlukan proses “buffering” agar dihasilkan region sebuah titik. Cari fungsi “buffering” tersebut di kolom “search” pada ArcGIS anda.

Di sini dibuat lingkaran dengan jarak 50 meter dari pusat titik di tiap-tiap lokasi. Secara default tipenya adalah lingkaran. Jika sudah tekan “OK” di bagian bawah. Pastikan peta baru yang berisi lingkaran dengan jari-jari 50 meter yang berada di sekitar titik lokasi.

Konversi ke Raster

Untuk menjadikan poligon menjadi matriks diperlukan proses konversi dari poligon ke raster dengan fungsi “Polygon to Raster”.

Tekan “OK” dan tunggu sesaat hingga ArcGIS membuat rasternya seperti gambar berikut ini. Perhatikan yang tadinya lingkaran (round) sedikit berubah menjadi kotak-kotak.

Membentuk Matriks di Matlab

Terakhir kita menarik data yang telah dibuat oleh ArcGIS ke Matlab. Pertama-tama data perlu di- “Export” terlebih dahulu. Bentuknya terdiri dari beberapa layer dengan komponen utamanya berekstensi TIF yang mirip dengan JPG atau PNG.

Pastikan di folder target terdapat salah satu citra yang akan dibaca matriksnya lewat Matlab. Arahkan “Current Directory” pada lokasi yang sesuai agar bisa dibaca Matlab. Jalankan perintah ini untuk melihat “image”nya.

  • imshow(‘sekolah_PolygonToRaster11.tif’)

Jika kita lihat ukurannya masih sangat besar.

  • I=imread(‘sekolah_PolygonToRaster11.tif’);
  • size(I)
  • ans =
  • 474 248

Ada baiknya resolusi sedikit diturunkan agar diperoleh matriks yang mudah dimanipulasi. Gunakan fungsi “imresize” dengan sebelumnya mengkonversi gray menjadi biner.

  • I2=imresize(I,0.25);
  • size(I2)
  • ans =
  • 119 62

Tampak resolusinya berkurang seperempatnya. Konversi menjadi biner agar dihasilkan image yang tidak pecah-pecah seperti di atas. Untuk membahas masalah tersebut perlu postingan lain tentang pengolahan citra. Semoga bisa menginspirasi.

Red, Green, dan Blue (RGB) Pada Matlab

Representasi warna yang dikenal antara lain: i) Red, Green, Blue (RGB), ii) Cyan, Magenta, Yellow, Black (CMYK), iii) Hue, Saturation, Brightness (HSB), dan iv) CIE-XYZ. Di sini yang paling mudah dan terkenal adalah RGB. Postingan ini bermaksud menjelaskan secara mudah model warna RGB ini.

Sejarah

Kita mengenal TV berwarna yang mengkombinasikan tiap piksel dengan gabungan komposisi warna Red, Green, dan Blue. Jika seluruh warna R, G, dan B nol atau padam, maka dihasilkan warna hitam. Sebaliknya jika seluruhnya menyala maksimal, diperoleh warna putih.

Membuat Warna

Perhatikan warna Turqoise di bawah ini. Warna ini merupakan kombinasi warna Red, Green, dan Blue berturut-turut 64, 224, dan 208. Bagaimana merepresentasikannya dalam Matlab?

Baik, kita mulai saja dengan membuka Matlab versi 2008 ke atas (mungkin sebelumnya bisa, asalkan ada fungsi “imshow” dan “cat” pada matriks).

Format RGB pada Matlab

Matlab menggunakan format matriks tiga dimensi, berbeda dengan gray atau biner yang menggunakan satu matriks saja. Oke, misalnya kita buat piksel yang membentuk huruf ‘c’.

  • c=[1 1 1;1 0 0;1 1 1];
  • imshow(c,’InitialMagnification’,’fit’)

Disini “InitialMagnification” artinya memperbesar huruf c tersebut agar bisa dilihat jelas. Coba saja tanpa fungsi itu, pasti hanya berupa titik kecil saja.

Nah, di sini kita diminta merubah huruf c format biner tersebut menjadi warna turquoise pada gambar di atas sebelumnya. Caranya adalah dengan merubah satu matriks ‘c’ tersebut menjadi komposisi tiga matriks R, G, dan B berupa perbandingan dari 0 hingga 255.

Warna Red, Green, Blue

Di sini warna merah adalah 64 dari 255. Tuliskan di command window instruksi berikut.

  • r=c*64/255
  • r =
  • 0.2510 0.2510 0.2510
  • 0.2510 0 0
  • 0.2510 0.2510 0.2510

Dengan cara yang sama buat juga Green dan Blue.

  • g=c*224/255;
  • b=c*224/208;

Jika komposisi R, G, dan B sudah dibuat, berikutnya adalah meng-concatenate tiga matriks tersebut (r, g, dan b) menjadi satu.

  • image=cat(3,r,g,b);
  • imshow(image,’InitialMagnification’,’fit’)

Pastikan diperoleh huruf ‘c’ dengan warna turquoise seperti di bawah. Jika Anda bisa memanipulasi satu piksel maka Anda pasti bisa memanipulasi beragam citra menjadi warna-warna tertentu. Sekian, semoga bermanfaat.

Instal Matlab Mobile (Android)

Matlab pertama kali diciptakan untuk memanipulasi matriks dengan cepat dan praktis. Oleh karena itu diberi nama “Matlab” singkatan dari Matrix Laboratory. Kemampuan yang sesederhana kalkulator diimbangi dengan pemrograman yang berat membuat aplikasi ini banyak disukai oleh peneliti-peneliti yang bermain dengan komputasi. Tidak lengkap sepertinya saat ini jika ada aplikasi yang tidak ada versi androidnya. Matlab pun menyediakan aplikasi versi android yang dapat digunakan oleh peneliti dan mahasiswa dimanapun berada. Postingan ini sekedar membagikan info bagaimana instal aplikasi Matlab via android ini.

1. Mengunduh Aplikasi

Berhubung smartphone saya menggunakan sistem operasi android maka mau tidak mau menggunakan playstore untuk mengunduhnya.

Tekan tombol Install untuk memulai instal aplikasi Matlab android ini. Sepertinya tidak perlu dijelaskan lebih jauh, butuh beberapa menit untuk menginstalnya. Pastikan Matlab siap digunakan.

2. Sign Up

Langkah berikutnya adalah mendaftar akun di www.mathworks.com. Tahap ini didahului oleh instal upgrade aplikasi. Sangat dianjurkan jika Anda punya lisensi Matlab, tetapi jika tidak tentu saja tidak perlu upgrade.

Satu hal penting untuk dapat mendaftar akun di Matlab adalah email resmi, bukan gmail, yahoo, dan sejenisnya. Setelah memasuki regional, lanjutkan dengan aktivasi dengan cara mengklik link yang dikirimkan via email resmi tersebut.

3. Testing

Selamat, Anda telah berhasil menginstal Matlab mobile. Berikut ini saya coba memanipulasi matriks, menampilkan citra dan menjalankan salah satu fungsi, yaitu normalisasi Euclidean. Beberapa juga sudah saya coba membuat plot/grafik, dapat dilaksanakan juga. Selamat mencoba, semoga bermanfaat.

Membangkitkan Bilangan Random Berinterval Pada Matlab

Terkadang kita diminta membangkitkan bilangan random, misalnya pecahan dari nol sampai 10 dengan interval 0.5. Fungsi bawaan matlab yang tersedia adalah rand(), sehingga jika maksimal angka 10 maka cukup dengan mengalikan rand()*10 akan diperoleh angka sembarang dari nol hingga 10.

  • rand()*10
  • ans =
  • 2.6297

Jika ingin berinterval tiap 0.5 maka secara logika harusnya 2.5 karena lebih dekat ke 2.5 dibanding 2.0 atau 3.0. Langkah termudah adalah dengan menggunakan bantuan if-else. Jalankan instruksi berikut di command window maka akan diperoleh 2.5.

  • angka=2.6297;
  • steps=0.5;
  • baseangka=floor(angka);
  • pecahan=angka-floor(angka);
  • upper=abs(steps-pecahan);
  • buttom=abs(0-pecahan);
  • if upper<buttom
  • newangka=baseangka+steps
  • else
  • newangka=baseangka
  • end

Kebetulan basis angkanya integer dimana untuk contoh di atas angka 2. Bagaimana jika intervalnya tiap 0.05? Jika angka 2.6297 maka tentu saja basisnya menjadi 2.6 (bukan angka 2 lagi). Logika sederhananya adalah dengan metode di atas, hanya saja basis angka dikalikan 10 (agar koma bergeser ke satu digit di kanan koma), tetapi jangan lupa untuk membagi lagi dengan 10 di akhir prosesnya.

  • angka=2.6297;
  • angka=angka*10;
  • steps=0.5;
  • baseangka=floor(angka);
  • pecahan=angka-floor(angka);
  • upper=abs(steps-pecahan);
  • buttom=abs(0-pecahan);
  • if upper<buttom
  • newangka=(baseangka+steps)/10
  • else
  • newangka=baseangka/10
  • end

Hasilnya:

  • newangka =
  • 2.6500

Kombinasikan dengan fungsi rand(), misalnya membangkitkan 5 bilangan random berinterval 0.05:

  • initial=[];
  • for i=1:5
  • angka=rand()*10;
  • angka=angka*10;
  • steps=0.5;
  • baseangka=floor(angka);
  • pecahan=angka-floor(angka);
  • upper=abs(steps-pecahan);
  • buttom=abs(0-pecahan);
  • if upper<buttom
  • newangka=(baseangka+steps)/10;
  • else
  • newangka=baseangka/10;
  • end
  • angka=[initial;newangka];
  • initial=angka;
  • end

Hasilnya adalah rentetan bilangan random sebanyak lima buah dengan interval 0.05 di bawah ini (hasil berubah-ubah karena random). Semoga bermanfaat.

  • angka =
  • 5.2500
  • 4.1500
  • 6.5500
  • 6.2500
  • 2.9000

Normalisasi dengan Mapping Standard Deviation (mapstd)

Selain dengan membentuk matriks ortogonal yang disukai backpropagation, ada banyak metode normalisasi. Dengan teknik minmax dapat dihasilkan bentuk yang cocok untuk range sempit (lihat post sebelumnya). Apakah ini yang terbaik? Tentu saja tergantung kasusnya. Untuk proyeksi (peramalan) metode normalisasi yang terkenal adalah yang berbasis statistik yaitu dengan mapping dengan standard deviation. Pertama-tama adalah menemukan rata-rata sebaran data tersebut:

Variabel Y adalah data dengan n adalah jumlah datanya. Berikutnya adalah menentukan standar deviasi atau dalam bahasa kita simpangan baku. Varians dikenal dengan rumus berikut:

Standar deviasi merupakan akar dari varians di atas. Jadi tiap data yang akan dinormalkan dengan cara ini dihitung berdasarkan nilai rata-rata dan standar deviasi di atas.

Untuk mempermudah, Matlab telah menyediakan fungsi mapstd. Silahkan buka Matlab (2008 ke atas). Ketik “help mapstd”, ikuti saja langkah-langkah di help yang dicontohkan Matlab.

Jika ingin melihat implementasinya, dapat dilihat skripsi mahasiswa UNY berikut ini untuk kasus peramalan saham (syariah):