Mengunduh Peta Wilayah Indonesia

Ketersediaan data spasial wilayah Indonesia saat ini tidak perlu dikhawatirkan lagi karena kita sudah memiliki website khusus wilayah Indonesia, dengan kebijakan satu peta. Berbeda dengan ketika saya riset saat kuliah, dulu agak kerepotan untuk mengunduh shapefile peta wilayah di Indonesia. Jika ada, terkadang berbayar, kecuali Anda mujur memperoleh unduhan gratis dari orang yang men-share peta-nya.

Geospasial Untuk Negeri

Situs ini merupakan situs resmi milik pemerintah untuk mengunduh informasi mengenai seluruh wilayah Indonesia. Untuk mengunduhnya Anda perlu mendaftar (register) terlebih dahulu. Prosesnya tidak terlalu lama, hanya sedikit mengetik informasi kita di form yang disediakan. Ada tiga langkah yang diperlukan, antara lain:

Buat “username” disertai dengan password. Sertakan email valid yang fungsinya untuk konfirmasi. Email yang diisikan tidak harus email resmi, boleh gmail, yahoo, dan email gratisan lainnya. Jika sudah, klik “lanjut” di pojok kanan bawah, untuk masuk ke “step 2”.

Langkah kedua berisi informasi mengenai pekerjaan kita. Isi saja apa adanya, dilanjutkan dengan menekan tombol “Lanjut” jika sudah selesai.

Jika telah mengisi form ini, di bagian kanan bawah akan muncul tombol “Selesai” yang artinya kita telah selesai mengisi seluruh form yang ada. Selanjutnya buka email Anda dan pastikan ada email dari application.support@big.go.id. Tekan tombol “Verifikasi Email”.

Selanjutnya Anda sudah bisa login ke situs geospasial Indonesia. Silahkan masuk ke wilayah yang ingin Anda unduh, misalnya kabupaten Bekasi.

Untuk mengunduh suatu wilayah, cukup arahkan mouse ke lokasi tersebut. Secara otomatis nanti wilayah tersebut akan menyala. Oiya, sebelumnya masuk terlebih dahulu ke nemu “Dowload” – “Peta per Wilayah”.

Setelah itu pastikan muncul peta Indonesia. Arahkan menggunakan mouse ke wilayah yang ingin diunduh. Untuk zoom in/out gunakan schrol pada mouse Anda. Silahkan login terlebih dahulu sebagai syarat untuk mengunduh.

Pilih 25k ketika ada form yang muncul di dekat wilayah tersebut. Jika sudah diklik maka Anda akan siap mengunduh file rar wilayah tersebut.

Tekan simbol unduh di dekat wilayah tersebut. Simpan di tempat yang Anda inginkan dan pastikan hasil download bisa diekstrak. Saya cukup tercengang karena bukan hanya peta wilayah yang tersedia, peta tematik lainnya seperti niaga, industri, danau, sungan, bahkan kabel listrik pun tersedia .. cek cek cek. Gambar di bawah setelah dibuka dengan ArcGIS disertai modifikasi pada label tertentu di peta. Kenapa tidak dari dulu dibuatnya ya, padahal waktu kuliah dulu nyari-nyari informasi tersebut.

 

Menambah Artikel di ORCID

Orcid (https://orcid.org) merupakan situs identifikasi peneliti yang berisi nomor dan identitas lainnya. Salah satunya adalah artikel-artikel yang telah dipublikasi. Masuk terlebih dahulu ke situs ORCID dan jika belum punya akun, silahkan register terlebih dahulu.

Setelah masuk akan muncul informasi seperti pekerjaan, pendidikan, dan publikasi. Link dapat dishare agar orang lain bisa melihat CV kita lengkap. Misalnya link ORCID saya ini.

A. Menambahkan Secara Manual

Di bagian atas artikel-artikel, dapat diklik beberapa metode penambahan publikasi, seperti DOI, BIBTEX, dan salah satunya adalah “add manually”. Biasanya jurnal-jurnal lokal ber-ISSN belum memiliki DOI jadi harus dimasukan secara manual.

Masukan informasi mengenai tulisan yang akan didaftarkan ke ORCID Anda. Isian yang ada tanda bintangnya wajib ada. Jika sudah tekan “add to list” di bagian bawah.

Pastikan isian baru muncul di daftar publikasi.

B. Dengan DOI

Jurnal internasional atau jurnal nasional terakreditasi, dari Sinta 1 sampai 6 pasti memiliki DOI. Karena wajib memiliki DOI, misalnya jurnal yang saya kelolo ini (Jurnal Piksel). Persiapkan DOI yang akan Anda daftarkan ke daftar publikasi ORCID Anda, misalnya dari Scopus saya, ada tulisan yang belum dimasukan dengan DOI: 10.30534/ijatcse/2019/4381.52019.

Kembali masuk ke daftar list artikel di ORCID, tekan add lewat DOI. Masukan DOI ketika diminta.

Setelah diklik “retrieve work details” informasi mengenai judul, nama jurnal, akan muncul. Tekan “add to list” ketika sudah yakin informasi-informasi lainnya.

Jika ingin mengintegrasikan ORCID ID ke Scopus silahkan lihat tautan berikut. Sekian semoga bermanfaat.

Mengaktifkan Spatial Analysis untuk Mengatasi ERROR 010096: There is No Spatial Analysist License

Terkadang ketika memanipulasi data spasial, khususnya Euclidean Distance, muncul pesan kesalahan seperti di bawah ini.

Untuk mengatasinya mudah saja. Buka “Extension” pada jendela “Customize”.

Buka kembali salah satu toolbox “Spatial Analyst”, misalnya Euclidean Distance. Pastikan toolbox sudah bisa dijalankan. Sebenarnya maksud ArcGIS mendisable spatial analysis agar tidak terlalu memberatkan penggunaan ArcGIS jika tidak sedang menggunakan Spatial Analysis. Semoga bermanfaat.

Mempersiapkan Data dan Training Model ANFIS, JST dan SVM

Dalam machine learning dikenal beberapa jenis data antara lain: data training dan data testing. Terkadang data training dipisah menjadi data training dan target. Dalam prakteknya, data training menggunakan sebagaian prosentase dengan sisanya dijadikan data tasting untuk pengujian model.

Excel dapat digunakan untuk mempersiapkan data training walaupun memiliki beberapa keterbatasan dalam mengelola “big data”. Untuk data yang tidak terlalu besar, aplikasi bawaan ms office ini cukup dapat diandalkan.

Walaupun cross validation banyak diterapkan saat ini, tetapi dengan 80% data training dan sisanya untuk testing (20%) sudah cukup untuk mengukur akurasi model yang dirancang. Sebagai contoh data training berikut dapat digunakan, dengan data latihnya. Berikut langkah proses mempersiapkan data training dan data testing.

1. ANFIS

Untuk ANFIS data training dan target digabung menjadi satu. Formatnya karena sudah sesuai dengan format pentabelan di Excel maka cukup menyiapkan data training saja. Gunakan dua kode ini untuk mengimport data dengan Matlab.

  • load(‘data.dat’);
  • load(‘testing.dat’);

Untuk ANFIS, fungsi “anfisedit” disediakan Matlab untuk melatih ANFIS lewat data yang ada. Karena isian sudah dalam bentuk DAT maka sebenarnya dua kode di atas hanya digunakan nanti untuk testing dan training lewat model lainnya seperti JST, SVM, dll.

Pastikan training data muncul dengan tiga kelas sesuai dengan data (kelas 1, 2 dan 3). Berikutnya “Generate FIS” diklik untuk meramu FIS yang masih kosong.

Angka 3 di atas berarti ada 3 komponen MF di tiap input. Jumlah angka yang muncul menandakan jumlah masukan, di sini ada empat input yang merupakan variabel penentu output. Tipe MF ada banyak, di sini akan digunakan “trimf” yang paling sederhana (linear). Gunakan saja defaultnya (3 komponen di tiap inputan), yang merepresentasikan kondisi “low”, “medium”, dan “high”. Output gunakan saja konstan. ANFIS hanya tersedia di jenis fuzzy “Sugeno”. Tekan “Struktur” di sisi kanan untuk melihat sekilas Network yang siap dilatih.

Berikutnya masuk ke panel “Train FIS” untuk melatih Network. Ada dua pilihan pembelajaran: hybrid dan backpropagation. Gunakan saja “hybrid”. Berikut merupakan hasil training dengan 3 epoch (mirip iterasi).

Error tampak di layar utama (sekitar 0.1445). Simpan hasil pelatihan lewat “File” – “Export” – Pilih file.

Setelah nama fuzzy diisi (berekstensi *.fis) maka model siap diuji dengan data testing yang sudah ada. Misalnya diberi nama “anfisiris.fis”. Untuk testing gunakan kode berikut ini:

  • anfisiris=readfis(‘anfisiris.fis’);
  • prediksi=evalfis(testing(:,1:4);
  • tes=testing(:,1:4)
  • hasil=evalfis(tes,anfisiris)

Terakhir adalah menghitung akurasi dengan cara prosentase MAPE (Mean Average Percentage Error)-nya:

Jika dibandingkan maka akan tampak beberapa yang error, misalnya di sini ada satu yang error, jadi nilai MAPE-nya= 1/39 *100 = 2,56 %. Atau akurasinya = 100-2,56 = 97,44%. Sedangkan jika ingin mengetahui prediksi mana saja yang tidak akurat dapat menggunakan matriks confusion.

  • target=testing(:,5);
  • target=transpose(target);
  • prediksi=transpose(round(hasil));
  • c=confusionmat(target,prediksi)
  • c =
  • 13 0 0
  • 0 13 0
  • 0 1 12

Cara membaca matriks confusion adalah sebagai berikut. Kolom merupakan prediksi sementara baris adalah aktualnya (dalam hal ini sama dengan target (testing di kolom kelima). Fungsi “round” ditambahkan pada hasil untuk mencari kelas prediksi terdekat, misalnya 2.7 dikategorikan kelas “3”. Diagonal pada matriks confusion menyatakan akurasi. Perhatikan di baris kedua kolom ketiga, di sini harusnya 13 tetapi berisi 12 karena ada satu prediksi 3 (baris ketiga) tetapi kenyataannya 2 (kolom kedua).

2. Neural Networks (Jaringan Syaraf Tiruan)

JST perlu memisahkan data training dengan target (labelnya). Selain itu, formatnya juga berbeda dengan data pada ANFIS, dimana variabel berdasarkan baris. Untuk itu perlu modifikasi data yang ada berdasarkan “data.dat” dan “testing.dat”. Berikut ini kode untuk data training dan targetnya.

  • load(‘data.dat’);
  • load(‘testing.dat’);
  • datalatih=data(:,1:4);
  • datalatih=transpose(datalatih);
  • target=data(:,5);
  • target=transpose(target);

Coba cek dengan fungsi “size”, pastikan jumlah baris merepresentasikan jumlah variabel, sementara jumlah kolom merepresentasikan jumlah data. Berikutnya buat JST kosong dan latih.

  • network=newff(datalatih,target,[81 81]);
  • network=train(network,datalatih,target);

Perlu disiapkan data untuk testing.

  • tesdata=testing(:,1:4);
  • tesdata=transpose(tesdata);
  • targettes=testing(:,5);
  • targettes=transpose(targettes);

Selanjutnya menggunakan fungsi “sim” untuk memprediksi.

  • hasil=sim(network,tesdata);
  • aktual=targettes;
  • prediksi=round(hasil);
  • c=confusionmat(aktual,prediksi);
  • c =
  • 13 0 0 0
  • 0 11 2 0
  • 0 4 6 3
  • 0 0 0 0

Dari matriks confusion di atas dapat diketahui precision-nya (atau dikenal juga dengan nama MAPE). Caranya adalah membandingkan total yang benar (angka di sisi diagonal) dengan total data testing.

  • 13+11+6
  • ans =
  • 30
  • ans/39
  • ans =
  • 0.7692

Akurasi yang dihasilkan (MAPE) adalah 76.92%.

3. Support Vector Machine (SVM)

SVM hanya memisahkan dua kelas yang berbeda. Jika ada lebih dari dua kelas, maka perlu modifikasi dengan menggunakan lebih dari satu garis pemisah. Salah satu tekniknya adalah membuat pohon keputusan. Misalnya ada tiga kelas (kelas 1, kelas 2 dan kelas 3) maka perlu dibuat tiga garis pemisah, misalnya kita beri nama svm1, svm2 dan svm3.

  • svm1, pemisah antara kelas 1 dan kelas 2
  • svm 2, pemisah antara kelas 1 dan kelas 3, dan
  • svm 3, pemisah antara kelas 2 dan kelas 3

 

(source: link)

Selanjutnya, dibuat logika if-else untuk mengarahkan garis pemisah yang sesuai (atau dengan teknik lain yang sesuai). Berikut ini salah satu contohnya:

  • test1=svmclassify(svm1,datatesting)
  • if test1==1
  • test2=svmclassify(svm2,datatesting)
  • if test2==1
  • class=’1′
  • else
  • class=’3′
  • end
  • else
  • test3=svmclassify(svm3,datatesting)
  • if test3==2
  • class=’2′
  • else
  • class=’3′
  • end
  • end

Untuk membuat garis pemisah, Matlab menyediakan fungsi “svmtrain”. Jika ingin membuat garis pemisah antara kelas 1 dan kelas 2 (svm1) diperlukan data latih yang memiliki kelas 1 dan kelas 2 (tanpa menyertakan kelas 3) disertai dengan group-nya (dalam JST dikenal dengan istilah target).

  • svm1=svmtrain(train,group)

Di sini “train” merupakan data gabungan kelas 1 dan kelas 2, begitu pula “group” merupakan kelas yang sesuai dengan “train”. Gunakan excel untuk memilah-milah antara kelas 1 dengan kelas lainnya untuk membuat svm2, dan svm3.

 

Tip dan Trik Klasifikasi Lahan di IDRISI

IDRISI (diambil dari kata Al-Idrisi, ahli geografi timur tengah yang juga keturunan Nabi Muhammad SAW) merupakan aplikasi untuk pemodelan land use/cover. Citra satelit yang terdiri dari 7 band frekuensi harus diklasifikasi menjadi beberapa kategori lahan. Standar klasifikasi biasanya menggunakan referensi dari Anderson et al, (link).

Untuk Unsupervised Classification dapat dengan mudah menggunakan fungsi “ISOCLUST” pada IDRISI asalkan memiliki beberapa Band frekuensi citra satelit hasil unduhan dari USGS. Nah, satu tugas yang menjengkelkan adalah mengklasifikasi ulang citra hasil kluster menjadi klasifikasi yang kita inginkan, apakah pemukiman, jalan, cropland, vegetation, dan lain-lain. Yang merepotkan adalah IDRISI menggunakan format “range” untuk menentukan warna hasil unsupervised classification. Postingan ini sedikit sharing cara mudah untuk klasifikasi ulang (reclassify) bahkan untuk yang buta warna sekalipun.

Perhatikan hasil ISOCLUST (Iteratif Self-Orginizing cluster analysis) di atas. Bagaimana kita tahu warna yang menunjukan air, pemukiman, jalan, dan lain sebagainya? Cara terbaik masih menggunakan citra komposit yang menghasilkan citra yang cocok menunjukan air, pemukiman, jalan, dan seterusnya. Namun yang termudah adalah dengan menekan satu persatu kota warna dan melihat kira-kira warna itu menunjukan apa. Misalnya warna ke-empat dari atas diklik, maka menunjukan citra di bawah ini yang dapat dipastikan itu adalah pemukiman/bangunan.

Bagaimana cara membuat tabel konversi dari sepuluh warna di atas menjadi beberapa kelas penting saja? Caranya adalah dengan pertama-tama menyalin warna di atas. Berikutnya konversi urutan dari atas menjadi kelasnya.

Walaupun di bagian tabel: 4 2 3 dan 4 3 4 bisa digabung menjadi 4 2 4 tetapi dengan redundancy di atas dapat mengurangi error. Perhatikan kolom bagian tengah tabel tetap rapi tersusun angka 1 sampai 10 sesuai dengan hasil klasifikasi ISOCLUST. Hasilnya seperti di bawah ini, semoga bermanfaat.

 

 

Competitive Network dan Contoh Implementasinya

Tipe network ini menghasilkan keluaran yang terbesar sebagai pemenang. Misal ada tiga input sebesar 1,2, dan 3, maka pemenangnya adalah input ketiga (sebesar 3). Berikut notasi standar competitive network.

Fungsi competitive network pada matlab adalah “compet”. Buka command window pada Matlab dan coba fungsi “compet”. Untuk lebih jelasnya silahkan buka help dengan mengetik “help compet” di command window.

  • a=[1;2;3];
  • compet(a)
  • ans =
  • 0
  • 0
  • 1
  • compet(-a)
  • ans =
  • 1
  • 0
  • 0

Perhatikan kode di atas. Jika ingin menemukan nilai tertinggi gunakan fungsi compet(a) sementara jika ingin mencari terendah, gunakan compet(-a). Biasanya mencari nilai terendah digunakan dalam menentukan mana yang paling mirip (similar) antara beberapa hasil output. Tentu saja ada sedikit modifikasi kode untuk memberitahu hasil minimum suatu inputan.

Misal kita beri nama tiga input tersebut berturut-turut “nilai A”, “nilai B” dan “nilai C”. Maka sistem diminta menampilkan nilai mana yang terkecil? Lanjutkan dengan kode berikut ini.

  • input1=[“nilai A”;”nilai B”;”nilai C”];
  • hasil=compet(-a);
  • [ind,result]=find(hasil);
  • minimum=input1(ind)
  • minimum =
  • “nilai A”

Lebih simple dibandingkan dengan menggunakan “if-else” berikut ini yang jauh lebih panjang jumlah baris programnya, apalagi yang akan dibandingkan sangat banyak.

  • if (a(1)<a(2)) && (a(1)<a(3))
  • minimum=’Nilai A’
  • else
  • if a(2)<a(3)
  • minimum=’Nilai B’
  • else
  • minimum=’Nilai C’
  • end
  • end
  • minimum =
  • ‘Nilai A’

Membuat Mask (Bingkai) Pada Citra & Manfaatnya

Postingan ini bermaksud menginformasikan problem ketika pencocokan pola citra kurang berhasil akibat pola yang tidak memiliki bingkai. Ketika dengan Autoassociative Memory diminta memprediksi angka satu berikut (lihat yang berwarna putih).

Prediksi di sebelah kanan memang tepat angka satu, tetapi terpotong di bagian atas dan bawahnya. Kita coba untuk menambahkan bingkai pada citra yang akan dilatih dan diterka.

Menambahkan Nol di Sekitar Matriks

Misal angka nol di bawah akan dibuatkan bingkainya. Langkah pertama adalah mengetahui ukuran matriks angka nol tersebut.

Gunakan fungsi size di Matlab. Setelah itu dengan fungsi “zeros” buat matriks berukuran dua digit lebih banyak dari ukuran sebelumnya. Misalnya matriks di atas memiliki ukuran baris x kolom sebesar 5 x 3 maka buatlah matriks nol dengan ukuran 7 x 5.

  • imshow(nol,’InitialMagnification’,’fit’)
  • nolmask=zeros(7,5);
  • nolmask(2:6,2:4)=nol;
  • imshow(nolmask,’InitialMagnification’,’fit’)

Perhatikan angka nol (yang berwarna putih) telah memiliki bingkai (warna hitam di sekelilingnya). Berikutnya kita coba melatih jaringan syaraf tiruan (JST) yang sebelumnya tanpa bingkai. Diuji dengan angka satu udah ok: hasil: “satu” (sebelah kiri) dan yang sebelah kanan nol dengan sedikit error berhasil mendeteksi (hasil deteksi: “nol”).