NARNET Untuk Data Kecil (Non-GUI)

Untuk data yang besar, GUI pada NARNET, lihat tulisan sebelumnya, dapat dijadikan andalah untuk peramalan data deret waktu (time series). Tetapi jika data kurang dari sepuluh, GUI menolak untuk memprosesnya. Untungnya NARNET dengan command window masih dapat dilakukan meskipun datanya berukuran kecil. Siapkan data berikut ini:

  • T=[1845005 1873470 1882869 2334142 2733030];
  • T=con2seq(T);

Data yang digunakan berjumlah lima buah. Data ini kemudian dikonversi menjadi data sequence dengan instruksi con2seq. Siapkan network dengan nama misalnya, “net” dengan fungsi narnet. Jumlah neuron yang digunakan misalnya 10 dan delay 2. Fungsi preparets dan train berturut-turut berfungsi untuk menyiapkan parameter-parameter pelatihan dan melatih network yang sudah disiapkan sebelumnya.

  • net=narnet(1:2,10);
  • [x,xi,ai,t] = preparets(net,{},{},T);
  • net = train(net,x,t,xi,ai);

Latih ulang jika hasil pelatihan di atas dirasa kurang memuaskan. Selain melihat performance sebaiknya lihat grafiknya dengan menekan tab performance dan juga regression. Contohnya adalah hasil regresi pada grafik berikut ini menunjukan data yang “fit” dengan persamaan regresi bentukan NARNET.

Berikutnya adalah memprediksi data keenam dan seterusnya. Fungsi yang digunakan adalah removedelay sebagai berikut:

  • nets = removedelay(net);
  • [xs,xis,ais,ts] = preparets(nets,{},{},T);
  • ys = nets(xs,xis,ais);
  • format longg
  • ys
  • ys =

    [2140750.10017932] [2174736.34212479] [2732810.26058797] [2846162.67542468]

Variabel ys memunculkan empat data dimana data yang terakhir adalah data prediksi. Format longg sengaja digunakan agar format angkanya tidak berpangkat. Bila ragu dengan hasil peramalan, latih dan prediksi lagi saja. Berikutnya untuk memperoleh data ketujuh, libatkan data keenam pada pelatihan NARNET. Selamat mencoba.

Tentang rahmadya

I'm a simple man .. Lahir di Sleman Yogyakarta, 7 Juni 1976 PENDIDIKAN: TK : - (tidak ada TK di tj Priok waktu itu) SDN : Papanggo, Jakarta 83 - 89 SMPN : 129, Jakarta 89 - 92 SMAN : 8, Yogyakarta 92 - 95 Univ. : Fak. Teknik UGM, Yogyakarta 95 - 2001 Pasca. : Tek. Informatika STMIK Nusa Mandiri, Jakarta 2008 - 2010 Doctoral : Information Management Asian Institute of Technology, Thailand 2013 - 2018 PEKERJAAN: Tek. Komputer AMIK BSI Jakarta : 2002 - 2005 IT Danamon Jakarta : 2005 - 2008 Tek. Informatika STMIK Nusa Mandiri Jakarta : 2005 - 2008 Univ. Darma Persada Jakarta: 2008 - 2013 Fakultas Teknik Universitas Islam "45" Bekasi : 2008 - Skrg ( Homebase) Univ. Bhayangkara Jakarta Raya: 2018 - Skrg Univ. Nusa Putra Sukabumi: 2018 - Skrg
Pos ini dipublikasikan di Artificial Neural Network, Asian Institute of Technology, Matlab, Riset dan Penulisan. Tandai permalink.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.