Membuat Aplikasi Web-based Machine Learning dengan Flask dan Jinja2

Sebenarnya Machine Learning (ML) bekerja di backend. Tetapi tidak ada salahnya bagi data saintis mencoba aplikasi front-end nya, misalnya menggunakan Flask dan Jinja2 untuk bahasa Python (lihat pos tentang Flask dan Jinja2). Untuk Jupyter Notebook sebenarnya sudah disiapkan library Tkinter, tetapi berbasis desktop (lihat pos yang lalu tentang Tkinter).

Cukup baik hanya saja perlu menjalankan Jupyter Notebook dan tampilan GUI berbasis desktop. Jika kita bisa menggunakan aplikasi tersebut berbasis web, maka pengguna tidak perlu memiliki Python dengan library-library yang dibutuhkan.

Persiapan

Flask memberikan fasilitas pemrograman web-based ML di sisi server. Oleh karena itu pustaka perlu disiapkan terlebih dahulu. Seperti disinggung pos yang lalu, diperlukan satu file python dan template. Di sisi python perlu diimpor library yang diperlukan. Pastikan tidak ada error di sisi impor seperti tampilan di bawah ini dimana library pandas belum ada di environment.

Tes Running ML

Terkadang kita sudah membuat aplikasi ML di backend dan akan dibuatkan aplikasi front-end nya di web. Langkah pertama adalah mencoba menjalankan ML tersebut langsung saja di web tanpa input-output (GUI) di web. Hal ini memastikan mesin berjalan sebelum dibuatkan GUI-nya mengingat fase ini adalah krusial. Repot juga kan ketika GUI dibuat tapi ML tidak berfungsi. Istilahnya ML kita jadikan seperti “Hello World”.

Masukan saja tiap sel satu-satu dari ML yang sudah ok di Jupyter Notebook. Dan pastikan di indikator web tidak ada error. Tiap kali source kita save ternyata langsung dieksekusi realtime. Di sini ada dua data csv, untuk training dan untuk testing, yang nanti dalam implementasinya berupa GUI input.

Tampak instruksi “print(y_train)” pada baris 21 muncul di indikator server web. Hal ini terjadi karena di baris 27 “debug=True” sehingga ketika perubahan kode di “svm.py” langsung dieksekusi. Di sini hasil proses dari instruksi “print” belum dimunculkan di web.

Berikutnya jika ML sudah berjalan via web, tinggal membuat GUI input data yang akan diprediksi. Sekian semoga bisa jadi inspirasi.

Tentang rahmadya

I'm a simple man .. Lahir di Sleman Yogyakarta, 7 Juni 1976 PENDIDIKAN: TK : - (tidak ada TK di tj Priok waktu itu) SDN : Papanggo, Jakarta 83 - 89 SMPN : 129, Jakarta 89 - 92 SMAN : 8, Yogyakarta 92 - 95 Univ. : Fak. Teknik UGM, Yogyakarta 95 - 2001 Pasca. : Tek. Informatika STMIK Nusa Mandiri, Jakarta 2008 - 2010 Doctoral : Information Management Asian Institute of Technology, Thailand 2013 - 2018 PEKERJAAN: Tek. Komputer AMIK BSI Jakarta : 2002 - 2005 IT Danamon Jakarta : 2005 - 2008 Tek. Informatika STMIK Nusa Mandiri Jakarta : 2005 - 2008 Univ. Darma Persada Jakarta: 2008 - 2013 Fakultas Teknik Universitas Islam "45" Bekasi : 2008 - Skrg ( Homebase) Univ. Bhayangkara Jakarta Raya: 2018 - Skrg Univ. Nusa Putra Sukabumi: 2018 - Skrg
Pos ini dipublikasikan di Python. Tandai permalink.

Satu Balasan ke Membuat Aplikasi Web-based Machine Learning dengan Flask dan Jinja2

  1. Ping balik: Flask dan Jinja2 Untuk Aplikasi Machine Learning Berbasis Web | Rahmadya Trias Handayanto

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.