Flask dan Jinja2 Untuk Aplikasi Machine Learning Berbasis Web

Mungkin ada pembaca yang sudah mahir metode-metode yang digunakan untuk machine learning, tapi kesulitan ketika membuat aplikasi yang digunakan oleh pengguna. Banyak pilihan yang mungkin, apakah berbasis desktop ataukah web. Pilihan berupa mejalankan lewat konsol tentu saja menyulitkan pengguna yang biasanya eksekutif pengambil keputusan. Untuk yang berbasis desktop (lihat pos yang lalu tentang tkinter) menyulitkan jika ingin digunakan bersama. Nah, penggunaan aplikasi berbasis web untuk machine learning menjadi satu-satunya pilihan yang baik. Dengan aplikasi web, aplikasi dapat digunakan oleh divisi lain. Pos ini merupakan penjelasan lebih lanjut dari post yang lalu dengan penambahan pada operasi aritmatika sederhana (penjumlahan).

Bahasa Pemrograman Front-End dan Back-End

Dua pilihan framework web berbasis python yang terkenal adalah “django” dan “flask”. Jika django diperuntukan untuk aplikasi besar (enterprise), flask cocok jika digunakan internal di perusahaan karena karakteristiknya yang microframework. Toh biasanya memang aplikasi machine learning tidak “diumbar” ke luar, melainkan hanya kepentingan internal saja. Biasanya memang machine learning bekerja secara back-end, sementara bahasa pemrograman lain seperti java, php, dan bahasa front-end lainnya diperbantukan. Tetapi ternyata dengan framework-framework web, python secara mengejutkan dapat digunakan sebagai front-end juga.

Mempersiapkan Pustaka (Library) Flask

Langkah penting pertama adalah menyiapkan pustaka untuk menjalankan Flask. Kita dapat menggunakan dua metode yaitu lewat konsole (dengan PIP) dan lewat Anaconda Navigator. Silahkan atur environment yang tepat agar tidak salah menggunakan environment.

Di sini saya menginstal Flask di environment “tensorflow” (hanya nama saja). Untuk yang konsol, gunakan “path” yang sesuai, atau bisa menggunakan aplikasi “virtualenv”. Atau untuk pemula seperti saya, gunakan saja Anaconda yang terintegrasi.

Format Folder Flask

Flask membutuhkan satu file python untuk menghidupkan server dan beberapa templet HTML untuk input dan outputnya. Misalnya untuk contoh kita menggunakan satu file python “web.py” untuk menghidupkan server dan mengatur komunikasi templet lainnya: “mainpage.html” dan “result.html”.

Gunakan beragam text editor untuk mengetik dan membaca program-program tersebut, misalnya notepad, sublimetext, IDLE, dan text editor lainnya. Pastikan letak file mengikuti standar di atas dimana HTML terletak dalam satu folder “templates”. Berikut contoh kode untuk menghidupkan server Flask.

Memang perlu usaha keras untuk rekan-rekan yang kurang memahami format HTML dan CSS. Silahkan pelajari sumber-sumber belajar HTML dan CSS tersebut. Atau bisa gunakan Bootstrap yang tersedia dengan cuma-cuma di internet.

Menghidupkan Server

Dengan environment yang sesuai, masuk ke mode konsol dan ketik: python <namafile.py> di folder yang tepat. Pastikan server hidup dengan indikasi adanya instruksi untuk mengakses http://127.0.0.1:<port>.

Untuk keluar bisa menggunakan “Ctrl+C”. Ada kejadian unik ketika saya mengutak-atik kode tetapi tidak bisa dijalankan karena server masih menyimpan yang lama (cache). Setelah mengganti port baru bisa.

Testing

Buka browser dan jalankan aplikasi. Pastikan dapat berjalan dengan sempurna. Silahkan untuk jelasnya buka video tutorial saya di Youtube berikut ini.

Tentang rahmadya

I'm a simple man .. Lahir di Sleman Yogyakarta, 7 Juni 1976 PENDIDIKAN: TK : - (tidak ada TK di tj Priok waktu itu) SDN : Papanggo, Jakarta 83 - 89 SMPN : 129, Jakarta 89 - 92 SMAN : 8, Yogyakarta 92 - 95 Univ. : Fak. Teknik UGM, Yogyakarta 95 - 2001 Pasca. : Tek. Informatika STMIK Nusa Mandiri, Jakarta 2008 - 2010 Doctoral : Information Management Asian Institute of Technology, Thailand 2013 - 2018 PEKERJAAN: Tek. Komputer AMIK BSI Jakarta : 2002 - 2005 IT Danamon Jakarta : 2005 - 2008 Tek. Informatika STMIK Nusa Mandiri Jakarta : 2005 - 2008 Univ. Darma Persada Jakarta: 2008 - 2013 Fakultas Teknik Universitas Islam "45" Bekasi : 2008 - Skrg ( Homebase) Univ. Bhayangkara Jakarta Raya: 2018 - Skrg Univ. Nusa Putra Sukabumi: 2018 - Skrg
Pos ini dipublikasikan di Decision Support System, Python. Tandai permalink.

Satu Balasan ke Flask dan Jinja2 Untuk Aplikasi Machine Learning Berbasis Web

  1. Ping balik: Menyisipkan Machine Learning Pada Aplikasi Web | Rahmadya Trias Handayanto

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.