Learning Vector Quantization (LVQ)

LVQ is another kind of competitive network that uses competitive and linear layer together (see past posting for competitive network). The winning neuron of the first stage is become a subclass. Then the second layer combines it into a single class. Many researcher use this kind network for signature identification.

The learning of LVQ is supervised learning. It needs a target as a basis of learning process. Use this script (LEARNING VECTOR QUANTIZATION) to practice your matlab skill in creating a LVQ network. Try to understand the syntax of lvq function by typing “help newlvq” on command window.

The above picture shows matlab respons to our train script function. You can see the IW and LW part of LVQ network using this script.

>> samplelvq.iw{1,1}

ans =

-0.1259 -0.0280

0.0862 0.1584

-0.0351 0.0306

>> samplelvq.lw{2,1}

ans =

1 1 0

0 0 1

Penulis: rahmadya

I'm a simple man .. Lahir di Sleman Yogyakarta, 7 Juni 1976 TK : - (tidak ada TK di tj Priok waktu itu) SDN : Papanggo, Jakarta 83 - 89 SMPN : 129, Jakarta 89 - 92 SMAN : 8, Yogyakarta 92 - 95 Univ. : Fak. Teknik UGM, Yogyakarta 95 - 2001 Pasca. : Tek. Informatika STMIK Nusa Mandiri, Jakarta 2008 - 2010 Doctoral : Information Management Asian Institute of Technology, Thailand 2013 - 2018 Pekerjaan: Tek. Komputer AMIK BSI Jakarta : 2002 - 2005 IT Danamon Jakarta : 2005 - 2008 Tek. Informatika STMIK Nusa Mandiri Jakarta : 2005 - 2008 Univ. Darma Persada : 2008 - Skrg Fakultas Teknik Universitas Islam "45" Bekasi : 2008 - Skrg ( Homebase)

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.