Problem Background Error Saat Prediksi dengan LCM IDRISI

Land Change Modeller (LCM) merupakan fasilitas yang ada di IDRISI untuk memodelkan perubahan lahan. Lahan di masa yang akan datang dengan data yang ada sebelumnya dapat diperlihatkan. Salah satu masalah yang sering muncul adalah adanya ketidak akuratan pada background seperti di bawah ini. Tetapi terkadang hasil proyeksinya benar. Postingan berikut salah satu cara untuk memperbaikinya. Mungkin ada yang punya cara lain silahkan share di komentar.

Untuk memperbaikinya selama ini saya menggunakan fungsi OVERLAY yang ada di IDRISI. Caranya adalah menjumlahkan image yang error tersebut dengan study area sesunggunya (gambar sebelah kanan). Langkah-langkahnya adalah sebagai berikut:

1. Reclassify Projected Land Cover

Langkah ini adalah menambah kategori hasil prediksi untuk menyimpan hasil penjumlahan/overlay dengan study area. Perhatikan gambar hasil reclassify di sebelah kanan. Kategori 1 dan 2 adalah background (=1), kategori 3 dan 4 adalah agriculture (=2), dan seterusnya.

Fungsinya adalah menampung hasi overlay. Jika Built-up yang dengan kategori baru =7 dijumlahkan dengan background study area (=0), hasilnya adalah 7 maka akan dikonversikan menjadi background. Hasilnya adalah nanti diharapkan built-up yang menjadi background (sumber masalah) tidak ada lagi.

2. Overlay dengan Study Area

Fungsi overlay dapat diakses di “menu” – “GIS analysis” – “Mathematical Operation” – “Overlay”. Masukan dua input yaitu study area dan hasil reclassify di atas. Ganti nama dengan yang baru, di sini saya hanya menambahkan “Update” ke berapa di akhir nama image.

3. Mengembalikan Kategori ke Kondisi Awal dengan Reclassify

Dengan mengembalikan kategori yang sesuai diperoleh hasil akhir yang tidak ada lagi background yang error. Perhatikan di sini kategori 7 harus dikonversi menjadi background.

Perhatikan bagian background (atas) sudah diperbaiki. Sekian, semoga bermanfaat.

Iklan

Create a Constraint in IDRISI

A constraint is an image that showing allowable and non-allowable locations for modelling. It represents zero for non-allowable and one for allowable. We can add two for incentive, the better location. For example we have a constraint that must be integrated for other constraint, e.g. vegetation. It means that the model do not allow to convert a vegetation into other land cover.

Use Mathematical operation in “GIS analysis” menu and chose “Overlay”. Fill with the two constraint images above and checklist the “First +Second” button in “Overlay option”.

After this operation, we have to convert two into zero, since the vegetation is a constraint. Use “Reclass” to convert it.

The last row will convert two into zero. The final constraint was created as a combination of two constraints (figure below).

Try to practice mathematical operation since it is very useful for image creation, especially in creating Drivers of Land change modeller (LCM). This video shows the step to integrate the two images.

Menampilkan PDF di WordPress

Ketika kemunculan istilah multimedia di tahun 90-an, beberapa aplikasi yang tidak berdasarkan teknologi multimedia mulai tersingkir, salah satunya adalah media yang berbasis teks. Teknologi multimedia berbasiskan kombinasi dari beragam media selain tulisan antara lain: suara, gambar, dan video. Akibatnya aplikasi yang hanya berdasarkan tulisan mulai tertinggal. Akan tetapi ternyata teks masih menjadi andalan kebanyakan orang karena sifatnya yang mudah, ringan, dan masih digunakan search engine untuk mencari informasi.

Blog yang sempat booming, dengan istilah blogger yang dipelopori oleh blogspot, mulai ditinggal peminatnya yang beralih ke sosial media (facebook, twitter, instagram, dan sejenisnya). Ditambah lagi beberapa penyedia aplikasi robot yang agak curang, hanya berorientasi jumlah yang akses, menyontek, dan banyak juga yang berkonten pornografi. Namun demikian banyak juga blogger yang setia mengupdate blog-nya karena memang bertujuan sharing berbagai macam hal. Seperti halnya film dan musik yang rawan dibajak, tetap saja eksis karena parasit pun akan mati jika inang-nya mati. Ujung-ujungnya karya jalan terus pembajak pun jalan terus, tetapi jangan khawatir, karma tetap bekerja (bagi yang percaya). Yang penting niatnya tulus, untuk berbagi ilmu dan informasi penting.

Saat ini vlog sedang mengalami pertumbuhan dan tren yang meningkat akibat berkembangnya teknologi penyimpanan data sehingga kelemahan video yang membutuhkan storage yang besar dapat diatasi. Vlog memang mudah, jelas, dan tidak perlu mengetik panjang lebar. Dengan modal kamera, teknik penyampaian yang bagus, disertai dengan editing, dapat menghasilkan video yang menarik. Namun sifatnya yang serial mengharuskan pemirsa runut mengikuti alurnya, berbeda dengan tulisan yang bisa serial bisa juga random akses yang hanya mengakses info khusus yang dibutuhkan saja. Dengan mengintegrasikan tulisan dan video diharapkan mampu meningkatkan efektivitas blog. Silahkan kunjungi postingan terdahulu bagaimana meng-insert video dari youtube di blog.

Insert PDF dan SLIDE

Tidak semua yang mencari informasi gemar membaca. Terkadang mereka hanya membutuhkan informasi tertentu saja. Salah satu jenis presentasi yang cocok adalah slide, yang dimotori oleh Microsoft Power point. Untuk itulah maka sangat baik jika konten slide yang sudah diformat dalam bentuk PDF diintegrasikan dalam tulisan kita di blog. Beberapa informasi legal tertentu (undang-undang, pengumuman, daftar/list, dan lain-lain) mungkin perlu ditampilkan dalam bentuk PDF disertai viewer yang terintegrasi di blog. Beberapa metode berikut ini dapat dicoba.

1. Dengan Plugin WordPress

Terus terang saya belum mencoba metode ini. Beberapa tutorial di Youtube sudah banyak beredar. Kebanyakan plugin yang tersedia berbayar.

2. Dengan Slideshare

Slideshare merupakan aplikasi web yang menyediakan fasilitas untuk sharing slide. Bukan hanya slide, ternyata PDF juga dapat digunakan. Slideshare merupakan aplikasi pendukung situs pertemanan linkedin. Masuk ke situs resmi slide share, dan Anda upload PDF atau slide yang akan diinsert pada blog. Atau lihat video tutorial ini.

Berikut adalah tampilan Pdf viewer dari Slideshare. Cocok untuk Slide karena ada tombol “next” untuk pindah slide.

3. Dengan aplikasi penyimpan (onedrive)

Aplikasi penyimpan, misalnya one drive, selain memiliki fasilitas penyimpanan, sharing file, juga memiliki fasilitas sharing file PDF dengan fasilitas embeded viewer. Pembaca akan membaca file PDF seolah-olah membuka pdf viewer dalam blog.

Berikut tampilan Pdf viewer bawaan One Drive. Bentuknya kontinyu, cocok untuk file bacaan karena tersambung terus. Tetapi untuk slide sepertinya Slideshare masih lebih baik.

4. Dengan Google docs dan lain-lain

Google docs juga memiliki fasilitas ini dan juga aplikasi-aplikasi lain yang banyak tutorialnya di internet.

Proses Seleksi Pendanaan Penelitian RISTEK-DIKTI

Salah satu aspek Tri-darma pendidikan tinggi yang sedang digenjot oleh kementerian Riset-DIKTI adalah bidang penelitian. Hal ini karena peringkat publikasi peneliti di Indonesia masih tertinggal oleh negara tetangga kita di ASEAN. Padahal negara Indonesia memiliki jumlah dosen yang jauh di atas negara tetangga seperti Singapura, Malaysia, dan Thailand (lihat postingan yang lalu). Salah satu usaha yang dilakukan adalah dengan memberikan hibah/bantuan berupa pendanaan terhadap peneliti.

Bantuan yang diberikan diharapkan meningkatkan kinerja seorang peneliti sehingga mampu melakukan publikasi di jurnal internasional. Logis juga menurut saya, mengingat jurnal internasional tidak sembarangan menerima publikasi ilmiah seseorang. Jurnal lokal kita sendiri sepertinya hanya digunakan untuk “syarat” saja, entah itu syarat naik pangkat atau syarat laporan serdos. Tulisan yang hanya “cerita” sepertinya masih bisa dipublikasikan. Terkadang materi perkuliahan coba dipublikasikan pula di jurnal lokal, satu hal yang tidak mungkin publish di jurnal internasional yang memang menuntut suatu kebaruan hasil penelitian serius. Dan logis pula jika tidak ada dana, seorang dosen tidak mungkin mengeluarkan kocek sendiri untuk melakukan riset. Kalaupun ada dana dari kampus tempat bekerjanya, biasanya masih jauh dari cukup. Postingan berikut mencoba memberi gambaran bagaimana proses suatu usul penelitian dari proses pengajuan hingga lolos.

1. Membuka situs SIMLITABMAS

Saat ini, khusus dosen pemegang nomor induk dosen (NIDN) memiliki akses ke situs SIMLITABMAS Dikti. Informasi mengenai kapan usul penelitian dibuka, kapan jadwal presentasi, dan hingga pengumuman yang lolos diunggah di situs ini.

2. Mengunggah Usul Penelitian

Usul/proposal penelitian dapat diunggah hanya pada waktu-waktu tertentu. Ketika login seorang dosen memiliki hak akses terhadap skim penelitian mana saja yang bisa (tertulis dengan warna biru) dan mana yang tidak bisa (berwarna merah). Yang menarik adalah ketika kita ingin memasukan satu anggota, maka anggota yang dituju harus menekan tombol kesediaan yang muncul otomatis ketika seseorang ingin menjadikannya anggota tim. Batas berapa jumlah menjadi ketua dan anggota juga tersedia di situs tersebut. Pemilik h-indeks yang lebih besar atau sama dengan dua memiliki hak untuk mengepalai/menjadi ketua dua usul penelitian.

3. Mengikuti Seminar Proposal

Selain Penelitian Dosen Pemula (PDP), pengusul diwajibkan mengikuti seminar proposal yang diagendakan pada waktu-waktu tertentu. Tetap diumumkannya di website SIMLITABMAS yang harus dipantau terus, terutama oleh staf LPPM kampus. Biasanya jadwalnya mendadak sehingga banyak yang tidak tahu atau tidak cukup waktu untuk menghadirinya. Calon penerima hibah yang dipanggil untuk seminar proposal adalah yang memenuhi syarat desk evaluation dari usul yang diunggah di SIMLITABMAS.

4. Pengumuman Pemenang Hibah

Pemenang hibah hasil desk evaluation dan seminar proposal diumumkan setelah beberapa bulan, cukup lama juga. Bahkan ada pengusul yang lolos tetapi orangnya sudah dipanggil Allah. Untuk tahun 2016 yang lalu, seminar proposal pada bulan Juli dan pengumumannya bulan Januari 2017. Cukup lama. Apakah sudah cukup? Ternyata belum.

5. Verifikasi Pemenang Hibah

Ini merupakan salah satu fase krusial yang baru muncul di tahun ini. Jika dulu, pemenang hibah sudah dipastikan akan didanai ternyata saat ini belum tentu. Adanya Badan Pemeriksa Keuangan (BPK) yang ikut andil mengaudit Ristek-DIKTI membuat beberapa hal berubah dan harus diperbaiki, jika tidak dapat diperbaiki maka pemenang hibah dibatalkan. Yang tidak dapat diperbaiki antara lain pemenang hibah yang sudah dua kali menerima PDP tetapi menang untuk yang ketiga kalinya sehingga yang ketiga dibatalkan karena syaratnya maksimal dua kali menang PDP. Selain itu hibah doktoral juga akan dibatalkan jika pengusul sudah lulus, hal yang tidak terjadi di tahun-tahun sebelumnya. Hanya kasus peneliti yang studi lanjut yang sedikit diampuni, yaitu anggota (yang memenuhi syarat) diperbolehkan naik menjadi ketua. Memang LPPM harusnya mampu mendeteksi pengusul-pengusul dari lingkungannya apakah memenuhi syarat atau tidak sebab jika kurang maksimal dalam mensortir usulan yang masuk, dapat menimbulkan kekecewaan baik dari pihak pengusul maupun kampus itu sendiri. Berikut surat dikti mengenai hal itu.

6. Penandatanganan Kontrak

Penandatanganan kontrak dilakukan oleh pihak LPPM dengan pihak kopertis setelah informasi dari Ristek-DIKTI mengenai revisi pemenang hibah muncul. Bahkan sampai informasi jadwal penandatanganan pun, belum diketahui siapa saja yang resmi memperoleh pendanaan hibah dan siapa saja yang dibatalkan. Saat penandatanganan baru diketahui siapa saja yang menang dan siapa saja yang gugur, disertai dengan jumlah dana yang diterima oleh masing-masing peneliti.

7. Revisi Pemenang Hibah Penelitian

Beberapa saat setelah penandatanganan kontrak, SIMLITABMAS mempublikasikan surat resmi penerima hibah penelitian yang sudah ditandatangani kontraknya. Tinggal pihak LPPM melakukan kontrak penelitian dengan peneliti di lingkungannya yang lolos untuk didanai. Berikut pemenang resmi hibah penelitian 2017 dari SIMLITABMAS setelah melalui fase-fase yang mendebarkan, selamat meneliti. Yang belum menang, coba lagi untuk yang 2018. Oiya, judul-judulnya bisa dijadikan rujukan judul yang baik lho ..

Managing Legend in IDRISI

Legend is information about symbols (colour, shape, line type, etc.) in the map. It helps reader to understand the map. In LCM, it also helps the system to compare two images. The picture below shows the error message in LCM IDRISI taiga when adding road image. There is no legend in the basis roads layer. How to add a legend to our map?

Even we use IDRISI selva that having a “harmonize” function to guide users to match the images, basis roads layer must be edited with a legend in selva as well as taiga version. Understanding how to match two images manually is very useful for the user. Click the image to be edited, e.g. road image, to add a legend.

In “metadata” click the Categories to fill the legend. Fill the category and code that similar to other images. Chose “copy from” for faster filling without typing the code and category. After filling the categories, when we open this image, the legend is showed beside (upper right) the map.

This is simple yet very useful.

Mempelajari Hal-hal Baru

Dunia selalu berubah, dan hanya satu yang tidak berubah yaitu perubahan itu sendiri. Jika tidak mengikuti perubahan maka pasti akan tertinggal. Beberapa perusahaan papan atas banyak yang mengalami kemunduran bahkan kehancuran karena kurang mengantisipasi perubahan-perubahan yang terjadi di era teknologi informasi yang cepat saat ini. Padahal beberapa tahun yang lalu perusahaan itu menguasai dunia. Dalam bukunya disruption, Prof. Renald Kasali membahas hal tersebut dan ada hubungannya dengan teknologi informasi yang berkembang pesat saat ini (lihat ulasannya di kompas). Sebenarnya bukan kita yang tidak maju, melainkan orang lain/pesaing jauh lebih pesat majunya. Henry David Thoreau berkata: Things do not change; we change.

Ketika lulus kuliah dan gagal melamar kerja di perusahaan-perusahaan besar, saya terpaksa banting stir menjadi dosen. Memang tidak dapat dipungkiri, karir dosen di jaman saya merupakan pilihan kedua (kalau bukan yang terakhir) dibanding bekerja di perusahaan-perusahaan swasta besar atau menjadi Pegawai Negeri Sipil (PNS). Tetapi saat ini sudah banyak mahasiswa yang berkeinginan menjadi dosen karena memang kesejahteraannya mulai diperhatikan negara (tunjangan serdos, riset, beasiswa, dan sebagainya) dan tentu saja harus berniat mencerdaskan bangsa.

Waktu itu di sekitar tahun 2002 teknologi masih belum terlalu berkembang seperti saat ini. Google pun masih meraba-raba arah perkembangannya. Salah satu MEDSOS yang saya ikuti baru “friendster”, itu pun pasif mengingat akses internet yang masih sulit saat itu. Dan menjadi dosen hanya butuh membaca buku pelajaran yang pernah dipelajari waktu kuliah dulu. Siswa pun sangat mengandalkan ilmu dan informasi yang kita miliki.

Begitu perkembangan teknologi informasi mulai terlihat, google yang waktu itu hanya berupa pencarian kata kini sudah menjadi andalan dalam menggali informasi yang dibutuhkan. Bagi dosen hal ini bisa menguntungkan tetapi bisa menjadi bumerang, terutama dosen-dosen yang kurang update (KUDET). Sialnya lagi saya mengajar di bidang informatika yang mengharuskan update terus, terutama teknologi-teknologi terkini.

Siswa SD pun bisa melakukan searching di google jika ingin mengetahui informasi tertentu yang bahkan guru-nya pun bisa jadi belum mengetahuinya. Seringkali saya diminta anak saya mencari informasi di google untuk PR dari guru di sekolahnya. Bagus-bagus saja menurut saya, karena bukan dari hasil pencarian/jawaban yang terpenting melainkan “keingintahuan” sebagai modal untuk mempelajari sesuatu.

Salah satu tokoh yang merupakan ikon dari kejeniusan adalah Prof. Albert Einstein. Einstein ketika sekolah kerap menjengkelkan guru/dosen karena keingintahuannya yang tinggi. Bahkan beberapa profesor menolak membimbing/menjadikan asisten karena sifatnya itu. Tetapi saat ini jangan khawatir, karena literatur-literatur banyak beredar di internet, dari buku, jurnal, blog, dan lain sebagainya sehingga tidak perlu banyak bertanya, tinggal searching saja. Mungkin hal-hal berikut ini yang sering saya lakukan bisa menjadi pertimbangan pembaca sekalian. Oiya, silahkan komentar di bawah jika kurang setuju atau ada hal-hal lain yang bisa ditiru.

Menguasai bahasa Inggris. Bahasa ini merupakan salah satu bahasa yang paling banyak digunakan di internet saat ini. Dengan menguasai bahasa ini maka sudah dipastikan kita dengan mudah mencari informasi-informasi yang ada. Jika Anda betah membaca translate aneh (dengan google atau sejenisnya) ya tidak apa-apa sih.

Membaca Cepat. Seberapa cepat kah kita membaca? Sulit juga mengukurnya. Tetapi bagi Anda yang pernah ikut ujian saringan masuk di kampus-kampus terkenal di Indonesia, misalnya universitas Indonesia, maka Anda pasti tahu seberapa cepat kita dituntut memahami suatu bacaan. Saya sendiri sempat berfikir waktu mengikuti test TPA, terutama bagian reading, apa benar ada yang bisa menjawab dengan cepat tulisan beberapa halaman itu (dalam bahasa Inggris). Mungkin memang itu tuntutannya, sepertinya UI tidak mungkin asal bikin soal tanpa mengukur kecepatan membaca calon siswa yang dites.

Menulis dengan Cepat. Mungkin ada yang tidak setuju, tetapi saya sudah menerapkannya dan cocok. Dengan menulis cepat, Anda otomatis membaca dengan cepat pula. Berbeda dengan membaca menulis membutuhkan manajemen yang rapi. Anda mungkin membaca cepat, tetapi jika bukan penulis yang cepat, saya yakin Anda kurang bisa melakukan manajemen terhadap informasi yang masuk. Saya ingat ketika sidang tesis, penguji saya (pa romi), mengkritik saya karena tidak bisa menunjukan tulisan yang saya yakin pernah baca. Jadi tulislah dengan cepat informasi-informasi yang masuk ke Anda saat itu juga, karena otak/ingatan ada batasnya. Selain itu dengan kebiasaan menulis, Anda sudah terbiasa memahami pola-pola suatu tulisan dan mencari dimana letak-letak poin penting dari sesuatu yang Anda baca. Tentu saja jadi bisa mengetahui “amburadul”-nya tulisan siswa-siswa bimbingan yang tidak terbiasa menulis tetapi biasa copy-paste.

Multi-disiplin. Ini merupakan obat mujarab untuk saya yang kurang “brilian” dibanding rekan-rekan saya. Mula-mula saya masuk ke dunia Computer Science murni, dan sempat satu semester masuk doktoral ilmu komputer. Tetapi karena kurang kuat bersaing dengan anak-anak muda dari negara lain akhirnya saya memutuskan untuk pindah haluan ke Information Management yang lebih lebar karena bisa memasuki wilayah-wilayah (disiplin) ilmu yang lain. Ketika tidak sanggup berkontribusi terhadap bidang kita, kita bisa berkontribusi menggunakan bidang kita terhadap bidang lainnya, yang terkadang lebih membutuhkan. Di sini fikiran terbuka (open minded) sangat diperlukan, dan tentu saja seperti di saran kedua di atas, membaca cepat sangat dibutuhkan karena kita harus memahami bidang-bidang baru lainnya karena sifat multi-disiplin. Tentu saja jangan terlalu jauh dari core ilmu kita dan road map riset yang kita tekuni.

Rendah Hati. Ada pepatah yang mengatakan di atas langit ada langit. Artinya kita tidak boleh sombong karena mau tidak mau saat ini kolaborasi/kerja sama sangat penting. Lihatlah tulisan-tulisan ilmiah, pasti ada bagian reference yang berisi sumber-sumber referensi yang mendukung tulisan tersebut, selain tentu saja acknowledgement terhadap pihak-pihak tertentu. Pertukaran informasi saat ini mungkin bisa melalui hubungan orang per orang. Tidak semua bisa diakses lewat google. Bagaimana kita berhubungan dengan periset-periset lain sangat menentukan informasi yang kita terima. Beda dengan google apa yang kita minta selalu diberikan, dengan manusia sedikit berbeda karena ada faktor lain yang menentukan diterimanya suatu informasi penting, yaitu kerendahan hati. Bagaimana menggunakan bahasa yang baik sangat menentukan diterimanya kita di suatu komunitas/forum/millist bidang tertentu. Kerendahan hati juga mengandung arti bahwa kita merasa selalu sebagai pemula. Dan salah satu karakter pemula/beginner adalah mudah bertanya dan selalu ingin tahu.

Menikmati Kehidupan. Yang terakhir ini hanya tambahan dan iseng-iseng saja. Tetapi ini saya praktekan karena bermanfaat dalam implementasi prinsip keingintahuan di atas. Prinsip keingintahuan pada dasarnya membuat pertanyaan yang tidak diketahui kemudian mencoba mencari jawabannya baik lewat analisa, sintesa, uji coba, maupun men-searching dari sumber lain. Kalau Einstein yang ber-IQ 200-an sih tidak masalah, selalu bisa menjawab. Lha bagaimana dengan saya yang pas-pasan, makin banyak saya belajar, makin banyak pertanyaan-pertanyaan yang tidak bisa saya jawab (solved). Jika diambil hati bisa stres sendiri. Oleh karena itu, sebagai saran ya nikmati saja ketidaktahuan yang dialami, nikmati kehidupan yang ada, sebelum akhirnya, karena mungkin Allah kasihan, doa orang tua, doa keluarga, doa pihak kampus tempat saya bekerja yang kasihan ga lulus-lulus, entah mengapa muncul sendiri jawabannya .. waks.

Source foto: https://id.wikipedia.org/wiki/Albert_Einstein. Ternyata bukan photoshop ya.

Validation

Testing and validation are important stage in modelling. The model may be a software, simulation, prototype, and so on. System Development Life Cycle (SDLC) includes the testing in its last stage before implementation. We can use “black box” or “white box” testing to ensure the software we have just created was following the requirements. For gathering more information about testing, see the software engineering book. This post will focus on validation.

The difference between Epoch and Iteration

In soft computing, modelling an application needs training, an iteration step to adjust some parameters to achieve some goals. In neural network the iteration term is replaced by epoch. The interesting explanation was found in this site by Ph.D student of MIT. Whereas the iteration only run in forward direction every step, the epoch runs both forward and backward direction.

Testing and Training

For training, the data must be prepared. Not only for number of data but also the clean of data must be considered. Use some method in data cleansing before training. The suggestion from text book of neural network, e.g. neural network design: hagan, was using a normal Euclidean for data training.

Instead of using all data for training, some applications separate these data into two blocks: data for training and testing. For example in IDRISI software, when a model use MLP neural network for training, it separates into two data: training and testing.

To ensure that data training and testing are well designed, Matlab has provided with crossvalind function for cross validation. Cross validation change the data training into testing and vice versa. Now 10-fold cross validation is a standard that use 10 blocks of data. Nine of the 10 blocks data used for training and one for testing (see the explanation).

Receiver Operating Characteristic (ROC)

ROC is used for comparing a prediction with the result. If the system predict a signature’s owner is John, and the actual is John, this situation are said “true positive” and if not “false positive”. The others are true negative and false negative. The Area Under ROC-Curve ( see AUC post) is a famous parameters in IDRISI software for accuracy calculation of a model.

In Land Change Modeller, two predictions are: change and persistence. For example if we predict that a location in 2015 is change, but actually not, it is called False alarm. Instead of true and false, the Misses, False alarms, and Hits are used. The explanation from IDRISI site:

  • A | B | B = Hits – Model predicted change and it changed
  • A | A | B = Misses – Model predicted persistence and it changed
  • A | B | A = False Alarms – Model predicted change and it persisted  

Other software and vertical application may be different term use in validation calculation.

Idrisi Taiga vs Selva

Idrisi merupakan perangkat lunak untuk mengelola data raster/image yang terkenal. Aplikasi ini sudah banyak digunakan terutama dalam jurnal-jurnal ilmiah. Kebanyakan digunakan untuk pemodelan pertumbuhan lahan yang dikenal dengan nama Land Change Modeler (LCM). Dua versi yang terkenal adalah “Taiga” dan “Selva”. Postingan singkat ini akan membahas plus minus kedua versi tersebut berdasarkan pengalaman yang dijumpai ketika memodelkan pertumbuhan lahan.

Walaupun terjadi sedikit konflik ketika kedua versi Idrisi tersebut diinstal bersamaan, tetapi tetap dapat dijalankan. Memang ada sedikit “hang” ketika beralih dari Idrisi taiga ke Selva, tetapi dengan menggunakan “task manager” window masalah itu dapat diselesaikan. Caranya adalah dengan men-“end task” proses idrisi yang “hang” tersebut. Untuk amannya sebaiknya membuka Idrisi di dua “account” windows yang berbeda, misalnya “user” dan “administrator”, atau user1 dan user2.

Idrisi Selva

Idrisi ini merupakan versi perbaikan dari Idrisi Taiga yang kaku. Kaku karena untuk mengelola dua jenis image, harus dipenuhi syarat-syarat sebagai berikut (lihat penjelasan lengkap di situs resminya):

  • Spatial extent harus konsisten
  • Sistem proyeksi/reference harus konsisten
  • Resolusi piksel harus sama
  • Kategori legend harus sama
  • Nilai background harus nol
  • background harus sama

Salah satu keunggulan selva adalah fasilitas harmonize yang akan memandu pengguna ketika dijumpai dua image yang beda spesifikasi, biasanya “legend” yang kurang pas. Selain fasilitas tersebut, Selva menyediakan satu metode training model yaitu SimWeight. Motode tambahan ini sepertinya kurang begitu signifikan karena berdasarkan uji coba yang dilakukan oleh vendor Idrisi, metode MLP neural network mengungguli motede SimWeight dan Logistic Regression.

Idrisi Taiga

Versi Taiga mengharuskan pengguna memahami teknik-teknik dalam memanipulasi suatu image seperti Project, Reclass, Mathematical, dan sebagainya. Metadata yang tersedia (terletak di bawah Idrisi Explorer) sangat membantu untuk mengetahui struktur suatu Image.

Terjadi sedikit hambatan ketika menggunakan Idrisi Selva yaitu hasil training MLP ketika digunakan untuk memprediksi muncul pesan kesalahan. Tetapi anehnya ketika dijalankan dengan Idrisi Taiga dapat berjalan dengan normal. Training dengan logistic regression di Taiga dapat berjalan baik dan cepat, terutama ketika menggunakan jumlah driver yang banyak. Jadi untuk sementara saya masih menggunakan Taiga, walaupun terkadang menggunakan Selva karena kepraktisannya. Pilihan ada di tangan pengguna apakah menggunakan Taiga atau Selva atau berdasarkan Lisensi yang dimiliki (kebetulan kampus saya menggunakan versi taiga yang agak “jadul”). Yang saya suka dari Taiga adalah akses yang lebih cepat (membuka dan menutup aplikasi) dan tampilan GUI yang sepertinya lebih praktis (hanya sedikit).

Cropping an Image in IDRISI

Previous post discussed how to use WINDOW function to crop big satellite image, but it only implements for rectangular area. Distance function in IDRISI that used for creating a driver of land-use growth (previous post about driver creation) also in rectangular extent. This post tries to explain how to create a driver with the true extent region, e.g. Bekasi city.

The dark area was a true extent of Bekasi city. The problem is how to crop the image based on Bekasi city? I have searched IDRISI function for cropping an area similar with “crop” function in ArcGIS but I have not found it yet. Finally I found the Mathematical function in “GIS analysis” menu. To use this function we have to prepare the crop image first. (Please write a comment for other method suggestion).

The background and the study area are separated with zero and one classes respectively. Since multiplying a zero and one to a driver will create a zero and an existing value of the driver, the background will be zero and the actual driver only presents with true extent of Bekasi city.

Input the first, second, and output image for overlaying calculation. Choose first * second for multiplying first with the second image. It seems easy, but in the implementation users must consider many things, e.g. the projection and extent between first and second images. Use “Metadata” to match both images.

Use “PROJECT” to match first with second images (See previous post how to use this function).

Creating Layer Group (RGF) File in IDRISI

RGF is a layer group file that containes number of image (raster) file. It makes easy when inserting a group of image file, e.g. in inserting drivers of land use growth (see figure below).

Instead of inserting one by one, we can simply insert layer group of variables. Open “Idrisi Explorer” and chose image files as member of layer group.

Right click the mouse and chose “Create” and “Raster Group”. Raster group file will be created and rename it, e.g. “Driver1.rgf”.

Add member of Layer group

To add member of layer group just click “Add Icon” in “Metadata”. Metadata is located below IDRISI Explorer. Add the new variable to be inserted in the layer group.

Click other image file and after click “OK” as confirmation, the new variable has successfully added to your layer group.

Program “World Class Professor” Ristek-Dikti

Semenjak bergabungnya kementerian ristek dengan pendidikan tinggi (Dikti) banyak trobosan-trobosan dalam kementerian yang dipimpin oleh M. Natsir ini baik yang pro maupun yang kontra (lihat yang kontra di post terdahulu). Salah satu trobosan yang sepertinya masuk kategori “pro” adalah program profesor kelas dunia (world class professor). Program ini bermaksud mendongkrak publikasi ilmiah negara kita, mengingat data di tahun 2014 yang menyebutkan bahwa kita masuk rangking 52 dari sisi jumlah publikasi ilmiah terindeks Scopus, padahal jumlah penduduk kita nomor 4 di dunia. Silahkan baca presentasinya di link sumber daya dikti ini.

Scopus walaupun dikritik karena sifatnya yang profit oriented tetapi dijadikan patokan oleh kebanyakan kampus-kampus di seluruh dunia, terutama kampus berbasis riset (research university). Sementara itu program world class professor sendiri menargetkan untuk membentuk suatu research university (lihat gambar di atas). Sasaran utamanya adalah faculty members, yang tidak lain adalah dosen.

Program profesor kelas dunia ini merupakan pilihan dari tiga alternatif untuk meningkatkan rangking kampus di Indonesia. Alternatif pertama adalah membentuk universitas riset. Untuk membentuknya dibutuhkan dana dan dukungan yang besar dan sulit. Sementara itu alternatif kedua adalah dengan merubah/mengkonversi teaching-based university menjadi universitas riset. Cara ini ditempuh oleh Malaysia yang menghasilkan universitas riset lewat konversi 5 PTN dan 1 PTS. Pemerintahnya men-support penuh. Indonesia memilih alternatif ketiga yaitu dengan programnya: profesor kelas dunia.

Skema Program World Class Professor

Ada dua skema program tersebut yaitu skema A dan B. Skema A jika dibaca dari presentasi paparan program itu adalah membentuk suatu kerja sama dengan kampus lain, berupa pusat unggulan riset. Profesor dari kampus lain bisa berasal dari luar negeri, dan syaratnya lumayan “wah”, yaitu h-index lebih besar atau sebesar 25 (Scopus) dengan 150-an artikel. Sepertinya sulit juga mencarinya. Advisor saya saja h-index-nya sekitar 15. Skema B sedikit lebih mudah, tidak harus pusat unggulan riset dan profesor kelas dunia dengan h-index lebih besar atau sama dengan 5 dengan 50 artikel. Kegiatan “turunannya” sepertinya banyak jika dilihat dari paparan presentasi program ini. Baik skema A maupun B sepertinya menargetkan jurnal dengan kuartil Q1/Q2 atau setidaknya Q3. Q1, Q2, dan Q3 sendiri adalah peringkat jurnal yang dibuat oleh Scimagojr. Mungkin itu saja informasi tentang World Class Professor. Berikut ini cara untuk mengetahui rangking suatu jurnal, siapa tahu bermanfaat.

Mengetahui Rangking Suatu Jurnal Internasional

Untuk melihat kuartil suatu jurnal, buka link Scimagojr. Masukan nama jurnal yang Anda tuju. Misalnya publikasi saya sebagai contoh, berada di jurnal “sustainability”. Berapakah rangkingnya? Masukan saja di kolom “Searching” Scimagojr.

Tekan simbol “kaca pembesar”. Ternyata nama jurnal yang ada kata “sustainability” nya banyak juga. Sebaiknya gunakan ISSN agar lebih cepat.

Tinggal tekan jurnal yang dituju maka rangking jurnal diketahui. Pada gambar di bawah ini tampak kuartil berwarna kuning yang jika mouse diarahkan ke sana muncul “Q2” yang berarti masuk kuartil 2, lumayan bagus juga. Grafik-grafik lainnya merupakan rangking dengan skala lain yaitu impact factor (IF), SJR,h-index jurnal dan lain-lain. Untuk SNIP, Impact factor yang dinormalisasi, terpaksa harus membuka situs Scopus Elsevier untuk mengetahuinya.

Kewajiban Profesor dalam Menulis

Profesor merupakan jenjang tertinggi seorang dosen atau peneliti. Saat ini profesor maupun asisten profesor (associate professor) di Indonesia diwajibkan membuat karya tulis yang dipublikasikan di jurnal internasional. Asisten profesor di Indonesia setara dengan Lektor Kepala. Tidak menunggu lama, protes pun bermunculan setelah peraturan tersebut diumumkan menteri riset, teknologi, dan pendidikan tinggi (RISTEK-DIKTI).

Protes tersebut berisi keberatan terhadap peraturan menteri yang dianggapnya tergesa-gesa dan memberatkan. Bahkan sudah masuk ke ranah DPR yang mengawasi peraturan tersebut apakah sesuai atau tidak. RISTEK-DIKTI sendiri mengambil keputusan tersebut setelah melihat kinerja profesor di tanah air yang kurang/tidak produktif dalam melakukan riset/penelitian. Jumlah profesor yang sebanyak 5000 orang tidak optimal dalam mengakses dana penelitian 14000 lebih, dan ini sangat disayangkan. Ancaman peraturan tersebut lumayan berat, yaitu mencabut tunjangan kehormatan.

Memang jurnal internasional merupakan salah satu bentuk standarisasi suatu riset, apakah dilakukan atau tidak, mengingat banyak penelitian yang didanai tidak ada kabar berita hasilnya. Dengan dipublikasikan ke Jurnal internasional maka kualitas riset yang melatarbelakangi suatu tulisan dapat diketahui. Beberapa jurnal terindeks seperti Scopus/Thomson menggunakan standar peer review ketika akan dipublikasikan, yakni pakar-pakar di bidangnya. Berbeda dengan monitoring dan evaluasi (monev) atau laporan hasil penelitian Ristek-Dikti yang belum tentu sesuai dengan bidang para reviewer yang ditunjuk Ristek-Dikti.

Dengan syarat suatu hibah dipublikasikan di jurnal internasional, tugas Ristek-dikti sedikit ringan karena terbantu oleh standar jurnal internasional. Harapannya bisa mengalahkan jumlah tulisan di jurnal internasional kompetitor terdekat kita yakni Malaysia. Idealnya adalah tiap satu dosen saja mempublikasikan satu makalah di jurnal internasional maka otomatis kita akan menyalip negara-negara tetangga kita dari sisi publikasi ilmiah. Tapi tentu saja ini sangat memberatkan, dan menurut saya langkah Ristek-dikti lumayan tepat dengan memaksa “kepala”-nya, yaitu Lektor kepala dan Profesor untuk menghasilkan publikasi di Jurnal internasional, paten, atau karya monumental lainnya.

Saat ini kebetulan saya tidak terlibat dengan peraturan tersebut, bukan lektor kepala/profesor, dan sedang studi lanjut pula. Bahkan sudah saya ikhlaskan untuk tidak menerima tunjangan sertifikasi dosen (serdos). Memang saya akui, berat juga mempublikasikan tulisan di Jurnal internasional. Mahasiswa doktoral saja yang masih fresh dan mengikuti terus perkembangan ilmu di jurnal-jurnal internasional masih kesulitan, apalagi beberapa dosen yang sudah “sepuh” dan terutama yang sudah lama lulus doktoralnya (ditambah waktu itu tidak ada kewajiban publikasi di kampusnya) pasti lebih sulit lagi. Beberapa profesor yang membimbing mahasiswa doktoral akan memaksa siswanya publikasi. Rekan saya yang kuliah di UI mengatakan dia diminta publikasi empat jurnal internasional. Untungnya saya yang ambil kuliah di luar negeri hanya mensyaratkan satu publikasi, walaupun syarat impact faktor yang di atas satu cukup memberatkan pula.

Webometrik telah mempublikasi peneliti-peneliti di Indonesia dengan h-index di atas 10 standar google scholar. Silahkan cek sendiri, dan coba iseng-iseng masukan namanya, ke Scopus. Jika dibandingkan dengan tetangga-tetangga kita jauh. Saya coba yang ranking 226 dengan h-index 13, di scopus hanya memiliki h-index 3. Dan uniknya Scopus pun diprotes oleh beberapa rekan dosen karena dianggap kapitalis. Tentu saja saya bingung juga. Coba perhatikan negara-negara maju di dunia, seperti AS, Jepang, Jerman, Inggris, Perancis, dll apakah mereka sanggup membuat indeks mandiri dan mampu mengalahkan Scopus atau Thomson? Sebagai patokan, univ Tokyo saja mempublikasikan jumlah tulisan per tahun di atas negara kita, ya tidak apa-apa sih jika kita optimis membuat indeks sendiri. Bolehlah kita protes asalkan konsisten, yaitu menggunakan software open source yang anti kapitalis. Jangan sampai kita protes tetapi tetap menggunakan software bajakan, malu dong.

All in all. Semoga saja gairah riset di tanah air semakin maju. Seperti kebijakan serdos dulu yang memacu dosen-dosen untuk studi lanjut ke jenjang S2. Seperti di negara-negara maju, semoga seluruh dosen di tanah air bergelar doktor atau bahkan profesor.